Пермский край 2022-2023 учебный год

ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО ХИМИИ МУНИЦИПАЛЬНЫЙ ЭТАП 7-8 КЛАСС

ТЕОРЕТИЧЕСКИЙ ТУР

Решения и критерии оценивания

Представлен один из возможных вариантов решения задач Общее максимальное количество баллов за задания олимпиады – 50 баллов.

Задача № 1

Запишем уравнения взаимодействия водорода со фтором, хлором, азотом, углеродом и натрием:

$$\begin{split} F_2 + H_2 &= 2HF \ (1) - \varphi \text{тороводород;} \\ Cl_2 + H_2 &= 2HCl \ (2) - \text{хлороводород;} \\ N_2 + 3H_2 &= 2NH_3 \ (3) - \text{аммиак;} \\ C + 2H_2 &= CH_4 \ (4) - \text{метан;} \\ 2Na + H_2 &= 2NaH \ (5) - \text{гидрид натрия.} \end{split}$$

Фтороводород и хлороводород – это хорошо растворимые в воде газы. В водных растворах они диссоциируют с образованием ионов водорода, то есть в растворах фтороводород и хлороводород проявляют свойства кислот:

$$HCl = H^{+} + Cl^{-}$$
 (6).

Аммиак также хорошо растворим в воде, в водных растворах он является основанием:

$$NH_3 + H_2O = NH_4OH = NH_4^+ + OH^-$$
 (7).

Метан плохо растворим в воде и не взаимодействует с водой, так как его молекула является не полярной.

Гидрид натрия при взаимодействии с водой нацело гидролизуется с образованием гидроксида натрия и водорода:

$$NaH + H_2O = NaOH + H_2$$
 (8).

Разбалловка

Написание уравнений (1)–(5)	5 x 0,5 б. = 2,5 б.
Название продуктов реакций (1)–(5)	5 x 0,5 б. = 2,5 б.
Указание на растворимость водородных соединений в воде и свойств	
их водных растворов	5 x 1 б. = 5 б.
ОТОТИ	10 б.

Задача № 2

Начнем с соединения А. Поведем расчеты по количеству атомов:

$$n(X): n(H): n(C): n(O) = \frac{4,2154 \cdot 10^{22}}{6,022 \cdot 10^{23}} : \frac{8,4308 \cdot 10^{22}}{6,022 \cdot 10^{23}} : \frac{8,4308 \cdot 10^{22}}{6,022 \cdot 10^{23}} : \frac{2,5292 \cdot 10^{23}}{6,022 \cdot 10^{23}} = 0,07: 0,14: 0,14: 0,42 = 1: 2: 2: 6$$

Таким образом, формула соединения \mathbf{A} – это $[XH_2C_2O_6]_n$ или $[X(HCO_3)_2]_n$. То есть скорее всего \mathbf{A} – это гидрокарбонат металла. Следуя данным из условия задачи 11,34 г вещества \mathbf{A} будет соответствовать его количеству в 0,07nмоль, то есть:

$$M(A) = \frac{11,34}{0.07n} = [A(X) + 122]n.$$

При n = 1 получим:

$$\frac{11,34}{0.07} = A(X) + 122$$

A(X) = 40, что соответствует кальцию, X - Ca.

Таким образом, соединение A – гидрокарбонат кальция $Ca(HCO_3)_2$.

Напишем уравнения реакций:

$$Ca(HCO_3)_2 = CaCO_3 + H_2O + CO_2$$
 (1)

$$CaCO_3 + H_2O + CO_2 = Ca(HCO_3)_2$$
 (2)

$$CaCO_3 + 2 HNO_3 = Ca(NO_3)_2 + H_2O + CO_2$$
 (3)

Таким образом, вещество \mathbf{F} –карбонат кальция $CaCO_3$, соль \mathbf{B} – нитрат кальция $Ca(NO_3)_2$.

Установим молярную массу соединения Г, если нам известна массовая доля кальция:

$$M(\Gamma) = \frac{M(Ca)}{\omega(Ca)} = \frac{40}{0.303} = 132 \ \Gamma$$
/моль

Молярная масса нитрата кальция равна 164 г/моль, и при разложении уменьшается 164 - 132 = 32 г/моль, то есть при разложении 1 моль нитрата кальция выделяется 1 моль кислорода. Можно предположить, что соединение Γ – нитрит кальция $Ca(NO_2)_2$.

$$Ca(NO_3)_2 = Ca(NO_2)_2 + O_2$$
 (4)

Разбалловка

Установление формул соединений А-Г	4 x 16. = 4 6.
Установление металла X	16.
Написание уравнений реакций (1)–(3)	3 х 1б. = 3 б.
Написание уравнения реакции (4)	2 б.
ИТОГС	10б.

Задача № 3

При превращении металла $\bf A$ в оксид $\bf B$ образуется оксид вида $\bf A$ О, поскольку металл $\bf A$ двухвалентный. Рассчитаем атомную массу металла

$$M(A) = M(оксида) - M(O) = \frac{M(O)}{1 - \omega(O)} - M(O) = \frac{16}{1 - 0.8956} - 16 = 137,3 г/моль,$$

что соответствует барию, значит металл \mathbf{A} – барий. Приведем формулы оставшихся соединений:

Шифр	Формула соединения
A	Ba
Б	BaO

В	Ba(OH) ₂
Γ	BaCl ₂
Д	BaSO ₄
E	SO_2

$$2Ba + O_2 = 2BaO \tag{1}$$

$$BaO + H2O = Ba(OH)2$$
 (2)

$$Ba(OH)_2 + 2HCl = BaCl_2 + H_2O$$
 (3)

$$BaCl_2 + Na_2SO_4 = BaSO_4 + 2NaNO_3 \tag{4}$$

$$BaSO_4 = BaO + SO_2 + O_2$$
 (5)

Сульфат бария применяется в качестве рентгенконтрастного вещества в медицине при исследовании органов желудочно-кишечного тракта.

Разбалловка

Установлен металл А, приведены формулы соединений Б-Е.		6 x 0,56. = 3 б.
Написание уравнений реакций (1)–(5)		5 x 16. = 56.
Приведен пример использования соединения Г		2 б.
	ИТОГО	10б.

Задача № 4

Запишем уравнение взаимодействия хлорида магния с нитратом серебра:

$$MgCl_2 + 2AgNO_3 = 2AgCl + Mg(NO_3)_2$$
 (1).

Согласно уравнению реакции (1)

$$n(MgCl_2) = \frac{1}{2}n(AgCl) = \frac{1}{2} \cdot \frac{m(AgCl)}{M(AgCl)} = \frac{1}{2} \cdot \frac{1,76}{143,5} = 0,006 \,_{ ext{MOЛЬ}}.$$

$$m(MgCl_2) = n(MgCl_2) \cdot M(MgCl_2) \cdot 0,006 \cdot 95 = 0,57 \text{ }\Gamma$$

Тогда массовая доля воды в кристаллогидрате равна:

$$m(H_2O) = m(HaBecku) - m(MgCl_2) = 1,22 - 0,57 = 0,65 \Gamma$$

$$w(H_2O) = \frac{m(H_2O)}{m(\text{навески})} \cdot 100 = \frac{0.65}{1.22} \cdot 100 = 53.3\%$$

Выведем формулу кристаллогидрата MgCl₂·хH₂O:

1:
$$x = \frac{0.57}{95}$$
: $\frac{0.65}{18} = 0.006$: $0.036 = 1$: 6.

То есть формула кристаллогидрата MgCl₂·6H₂O.

Разбалловка

Написание уравнения (1)	2 б.
Расчет массовой доли воды в кристаллогидрате (любым способом)	5 б.
Вывод формулы кристаллогидрата (любым способом)	3 б.
ПОТИ	О 10 б.

Задача № 5

Запишем уравнение образования пероксида водорода из простых веществ – водорода и кислорода

$$H_{2(\Gamma)} + O_{2(\Gamma)} = H_2 O_{2(\Gamma)};$$

так как в реакции образуется 1 моль пероксида водорода, то тепловой эффект этой реакции равен 188 кДж. Следовательно, можем записать термохимическое уравнение:

$$H_{2(\Gamma)} + O_{2(\Gamma)} = H_2 O_{2(\Gamma)} + 188 кДж.$$

Образование молекулы H_2O_2 представить, как последовательный процесс разрыва связей H-Н в молекуле Н2, связей О-О в молекуле О2 и процесс образования двух связей О-Н и одной связи О-О, поэтому тепловой эффект реакции образования перокисда водорода можно представить следующим образом

$$Q = 2E(O-H) + E(O-O) - E(H-H) - E(O-O)_{KUCJ}$$

следовательно,

$$E(O-O) = Q + E(H-H) + E(O-O)_{KHCJ} - 2E(O-H).$$

Чтобы вычислить энергию связи О-О в пероксиде водорода вычислим энергию связи О-Н в воде:

$$Q_{\text{реак}} = 4E(O-H) - 2E(H-H) - E(O-O)_{\text{кисл}}$$

$$\begin{split} Q_{\text{реак}} &= 4E(O-H) - 2E(H-H) - E(O-O)_{\text{кисл}}.\\ E(O-H) &= \sqrt[1]{_4} \left[Q + 2E(H-H) + E(O-O)_{\text{кисл}} \right] = \sqrt[1]{_4} \left[484 + 2 \cdot (436) + 498 \right] = 463,5 \text{ кДж/моль}. \end{split}$$

В итоге получим, что

$$E(O-O) = Q + E(H-H) + E(O-O)_{\text{кисл}} - 2E(O-H) = 188+436+498-2\cdot463,5 = 249 \ \text{кДж/моль}$$

Разбалловка

Написание термохимическое уравнение реакции образования Н2О2	
Без указания агрегатного состояния вещества -0.5 б.	
Определение энергии связи О-Нв воде	4 б.
Определение энергии связи О-О в перекиси водорода	4 б.
ОТОТИ	10 б.