Решения задач и система оценивания – 10 класс (2023 г)

Задача № 1

Пусть в V литрах воды растворили 10V литров газообразного галогеноводорода HX, тогда в растворе масса растворителя равна $m(H_2O) = 1000V$, а масса растворенного вещества $m(HX) = (10V / 22,4) \cdot M(HX)$.

По условию задачи
$$\frac{(10\text{V}\,/\,22,4)\cdot\text{M}(\text{HX})}{(10\text{V}\,/22,4)\cdot\text{M}(\text{HX})+1000V}=0,054$$
 , откуда после сокращения на

V, находим $M(HX) = 128 \, \Gamma / \text{моль} - \text{это йодоводород, HI.}$

Качественные реакции на присутствие в растворе ионов I⁻

$$HI + AgNO_3 = AgI\downarrow$$
 (желтый осадок) + HNO₃ Cl_2 (водный раствор) + 2 $HI = I_2$ (фиолетовое окрашивание) + 2 HCl (возможны другие примеры)

Система оценивания: определение галогеноводорода -3 балла; уравнения реакций -2 балла.

Задача № 2

Смесь газов SO₂, CH₂=CH₂, CH₄ пропускаем через известковую воду и отделяем сернистый газ в виде осадка сульфита кальция:

$$Ca(OH)_2(p-p) + SO_2(ra3) = CaSO_3 \downarrow + H_2O.$$

Оставшуюся смесь пропускаем через водный раствор брома и отделяем этилен в виде жидкого дибромэтана, который не смешивается с водой:

 $CH_2=CH_2+Br_2(p-p)=CH_2Br-CH_2Br$, метан остается в чистом виде. Выделение SO_2 : отделяем осадок $CaSO_3$ и действуем на него кислотой:

$$CaSO_3 + 2 HCl(избыток) = CaCl_2 + SO_2\uparrow$$

Выделение СН₂=СН₂: на дибромэтан (жидкость) подействуем порошкообразным цинком

$$CH_2Br - CH_2Br + Zn(порошок) = CH_2 = CH_2\uparrow + ZnBr_2$$

Система оценивания: методика разделения – 2 балла; уравнения реакций – 4 балла.

Задача № 3

Из общих соображений ясно, что газообразным кислотным оксидом A может быть углекислый CO_2 или сернистый SO_2 газ (оксиды азота не подходят — соли азотной кислоты хорошо растворимы). Карбонаты и сульфиты щелочноземельных металлов M (вещество Б) малорастворимы и в водной среде образуют суспензии (взвеси), которые можно растворить, если через них пропускать соответственно CO_2 или SO_2 , при этом образуются растворимые кислые соли:

$$MCO_3(взвесь) + CO_2(газ) + H_2O = M(HCO_3)_2(p-p)$$

 $MSO_3(взвесь) + SO_2(газ) + H_2O = M(HSO_3)_2(p-p)$

При кипячении и упаривании растворов кислых солей происходит их разложение с образованием осадка (накипи) средних солей:

$$M(HCO_3)_2(p-p) = MCO_3\downarrow + CO_2\uparrow + H_2O\uparrow$$

 $M(HSO_3)_2(p-p) = MSO_3\downarrow + SO_2\uparrow + H_2O\uparrow$

Прокаливание средних солей приводит к образованию двух оксидов:

$$MCO_3 = MO + CO_2$$
 и $MSO_3 = MO + SO_2$,

где оксид МО – вещество В.

По условию задачи $M(MO) = 3,477 M(CO_2)$ или $M(MO) = 3,477 M(SO_2)$, тогда

- а) $M(MO) = 3,477 \ M(CO_2) = 3,477 \cdot 44 = 153 \ г/моль и <math>M(M) = 153 16 = 137 \ г/моль это$ барий
- б) $M(MO) = 3,477 M(SO_2) = 3,477 \cdot 64 = 215,6 г/моль и <math>M(M) = 215,6 16 = 199,6 г/моль –$ это близко к ртути, но карбонат и сульфит ртути Hg^{2+} не могут быть получены в силу необратимого гидролиза.

Итак, вещество A – это CO_2 ; вещество B – это $BaCO_3$ и вещество B – это BaO.

При действии избытком воды на оксид бария образуется раствор гидроксида бария и при пропускании через него углекислого газа (в недостатке) образуется осадок карбоната бария:

$$BaO + H_2O = Ba(OH)_2(p-p)$$
 и $Ba(OH)_2(p-p) + CO_2(Heдостаток) = BaCO_3 \downarrow + H_2O$

Система оценивания: выбор вариантов кислотных оксидов -2 балла; уравнения реакций с комментариями -5 баллов; определение веществ -3 балла.

Задача № 4

Изомерные предельные спирты имеют одинаковую брутто-формулу $C_nH_{2n+1}OH$ и одинаковую молярную массу M=12n+2n+1+17=14n+18 г/моль.

При нагревании смеси спиртов с концентрированным раствором серной кислоты протекает реакция дегидратации с образованием газообразных (по условию задачи) алкенов $C_nH_{2n+1}OH = C_nH_{2n} + H_2O$.

Образовавшиеся алкены присоединяют бромоводород по двойной связи:

$$C_nH_{2n} + HBr = C_nH_{2n+1}Br$$
.

Согласно уравнениям реакций n ($C_nH_{2n+1}OH$) = n (C_nH_{2n}) = n (HBr) = 6.72 / 22.4 = 0.3 моль, тогда молярная масса спиртов равна M = 18 г / 0.3 моль = 60 г/моль, а индексы в брутто-формуле 14n + 18 = 60 и n = 3.

Итак, брутто-формула спиртов C₃H₇OH и ей соответствует два изомера CH₃–CH₂–OH – пропанол-1 и CH₃–CH(OH)– CH₃ – изопропанол (пропанол-2)

Межклассовым изомером этих спиртов является простой эфир СН₃-О-СН₂-СН₃.

Система оценивания: уравнения реакций -2 балла; определение брутто-формулы спиртов -2 балла; три структурные формулы и названия 3 балла.

Задача № 5

- 1) $2 \text{ NaBr } (p-p) + \text{Cl}_2(\text{ra3}) \rightarrow 2 \text{ NaCl } (p-p) + \text{Br}_2(p-p)$
- 2) Электролиз раствора хлорида натрия 2 NaCl (p-p) $+ 2 \text{ H}_2\text{O} \rightarrow \text{H}_2 \uparrow + \text{Cl}_2 \uparrow + 2 \text{ NaOH (p-p)}$
- 3) 2 Al +2 NaOH (конц.p-p) + 6 H₂O (гор.) \rightarrow 2 Na[Al(OH)₄] + 3H₂ \uparrow
- 4) $CuO + H_2 \rightarrow Cu + H_2O\uparrow$ (при нагревании)

- 5) $Cu + 2 AgNO_3 (p-p) \rightarrow 2 Ag + Cu(NO_3)_2 (p-p)$
- 6) $3 \text{ Ag} + 4 \text{ HNO}_3 \text{ (pa36.p-p)} \rightarrow 3 \text{ AgNO}_3 + \text{NO}\uparrow + 2 \text{ H}_2\text{O}$

Система оценивания: уравнения реакций – 6 баллов.

Задача № 6

При растворении кристаллогидрата $M(NO_3)_3 \cdot 6H_2O$ образуется раствор нитрата металла (III), из которого раствором основания АОН осаждают гидроксид металла(III):

$$M(NO_3)_3 + 3 AOH(изб) = M(OH)_3 \downarrow + 3 ANO_3$$

и $n(M(NO_3)_3 \cdot 6H_2O) = n(M(NO_3)_3) = n(M(OH)_3)$

При прокаливании гидроксида протекает реакция:

$$2 M(OH)_3 = M_2O_3 + 3H_2O\uparrow$$

и $n(M_2O_3) = n(M(OH)_3)/2$

Таким образом,

$$n(M_2O_3) = n(M(NO_3)_3 \cdot 6H_2O)$$
 /2 или

$$\frac{0,159}{2M+48} = \frac{1}{2(M+3\cdot62+6\cdot18)}$$
, откуда легко находим $M=27$ г/моль – это алюминий.

Особенность осаждения гидроксида алюминия из растворов его солей – нужно использовать раствор аммиака (гидроксида аммония) – слабого основания:

$$Al(NO_3)_3 + 3 NH_4OH(изб) = Al(OH)_3 \downarrow + 3 NH_4NO_3$$

Если же использовать растворы щелочей (NaOH, KOH, ...), то можно потерять осадок в силу амфотерности гидроксида алюминия:

$$Al(NO_3)_3 + 4 NaOH(изб) = Na[Al(OH)_4](p-p) + 3 NaNO_3$$

Система оценивания: уравнения реакций -2 балла, определение металла -2 балла; особенности осаждения гидроксида алюминия -2 балла.