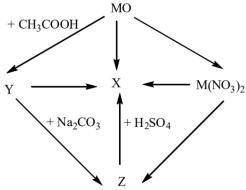
Критерии и методика оценивания выполненных олимпиадных заданийВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО ХИМИИ РЕГИОНАЛЬНАЯ ПРЕДМЕТНО-МЕТОДИЧЕСКАЯ КОМИССИЯ

КРИТЕРИИ И МЕТОДИКА ОЦЕНИВАНИЯ ВЫПОЛНЕННЫХ ОЛИМПИАДНЫХ ЗАДАНИЙ ТЕОРЕТИЧЕСКОГО ТУРА


возрастной группы (10 класс) муниципального этапа всероссийской олимпиады школьников по химии

2023-2024 учебный год

По теоретическому туру максимальная оценка результатов участника возрастной группы (10 классы) определяется арифметической суммой всех баллов, полученных за выполнение заданий и не должна превышать 50 баллов.

ЗАДАНИЕ 10.1. (Источник – ВОШХ, г. Москва, школьный этап, 2018 год)

Расшифруйте схему превращений, определите неизвестный элемент М и напишите уравнения всех реакций, если известно, что действие цинка на водный раствор, содержащий 9,75 г Y, позволяет получить 6,21 г твёрдого простого вещества М. Напишите уравнения всех указанных реакций.

РЕШЕНИЕ:

Из схемы можно сделать вывод, что Y – ацетат двухвалентного металла М. В ряду напряжений М расположен правее цинка, поэтому происходит реакция

$$M(CH_3COO)_2 + Zn = M + Zn(CH_3COO)_2.$$

n(aµетата) = n(M)

$$9,75/(M+118)=6,21/M$$

$$M = 207$$
, это – свинец.

Расшифруем схему превращений:

Уравнения реакций:

$$PbO + 2CH_3COOH = Pb(CH_3COO)_2 + H_2O$$

$$Pb(CH_3COO)_2 + Na_2CO_3 = PbCO_3 \downarrow + 2CH_3COONa$$

(правильно: $2Pb(CH_3COO)_2 + 2Na_2CO_3 + H_2O = Pb_2(OH)_2CO_3 \downarrow + 4CH_3COONa + CO_2 \uparrow$, однако средний карбонат также засчитывается)

$$PbCO_3 + H_2SO_4 = PbSO_4 \downarrow + H_2O + CO_2$$

$$PbO + SO_3 = PbSO_4$$
 (или $PbO + H_2SO_4 = PbSO_4 \downarrow + H_2O$)

$$PbO + 2HNO_3 = Pb(NO_3)_2 + H_2O$$

$$Pb(NO_3)_2 + Na_2CO_3 = PbCO_3 \downarrow + 2NaNO_3$$

(правильно: $2Pb(NO_3)_2 + 2Na_2CO_3 + H_2O = Pb_2(OH)_2CO_3 \downarrow + 4NaNO_3 + CO_2 \uparrow$,

однако средний карбонат также засчитывается)

 $Pb(NO_3)_2 + H_2SO_4 = PbSO_4 \downarrow + 2HNO_3$

 $Pb(CH_3COO)_2 + Na_2SO_4 = PbSO_4 \downarrow + 2CH_3COONa$

ОЦЕНИВАНИЕ:

№	Содержание	Баллы
1	Определение вещества М	2
2	Уравнения реакций 8х1	8
ИТОГО		

ЗАДАНИЕ 10.2. (Источник ВОШХ, муниципальный этап г. Москва, 2010 год)

Теплота образования некоторого газообразного углеводорода равна 103,7 кДж/моль. В результате сгорания образца этого углеводорода выделилось 511 кДж тепла. Масса образовавшегося при этом диоксида углерода в 3 раза больше, чем исследуемого образца. Теплота сгорания углерода равна 393,5 кДж/моль, а теплота сгорания водорода 241,8 кДж/моль.

Вычислите теплоту сгорания исследуемого углеводорода.

Рассчитайте массу сожженного образца этого углеводорода.

Приведите уравнения соответствующих реакций.

РЕШЕНИЕ:

Обозначим формулу углеводорода C_xH_{2y} (принимаются другие варианты, которые не противоречат условию задачи и предложенному участником решению).

Его сгорание происходит в соответствии с уравнением:

$$C_xH_{2y} + [(2x+y):2]O_2 = xCO_2 + yH_2O$$

По условию задачи $m(CO_2)=3m(C_xH_{2v})$, следовательно

$$44x = 3 \cdot (12x + 2y), 8x = 6y, x:y = 6:8 = 3:4$$

Возможные молекулярные формулы - С₃Н₈, С₆Н₁₆ и т.д., условию

удовлетворяет только первая (так как углеводороды, содержащие 5-6 атомов

углерода при обычных условиях не являются газообразными веществами и,

кроме того, в них больше водорода, чем допускает формула C_nH_{2n+2}).

Таким образом, сожжению был подвергнут пропан

$$C_3H_8 + 5O_2 = 3CO_2 + 4H_2O$$

Рассчитаем теплоту сгорания пропана:

- 1) $3C + 4H_2 = C_3H_8$ $Q_1 = 103,7$ кДж/моль
- 2) $3C + 3O_2 = 3CO_2$ $Q_2 = 3.393,5$ кДж/моль = 1180,5 кДж/моль

3)
$$4H_2 + 2O_2 = 4H_2O O_3 = 4.241.8 кДж/моль = 967.2 кДж/моль$$

$$Q = (Q_2 + Q_3) - Q_1 = (1180,5 + 967,2) - 103,7 = 2044$$
 (кДж/моль)

При сгорании 1 моль пропана выделяется 2044 кДж/моль, а так как

выделилось 511 кДж, то, следовательно, было сожжено 511:2044 = 0.25 (моль)

СЗН8 и его масса составит 44 г/моль \cdot 0,25 моль = 11 г.

ОЦЕНИВАНИЕ:

No	Содержание	Баллы
1	Уравнение сгорание углеводорода в общем виде	2
2	Расчет соотношения Х к У	2
3	Определение формулы пропана	2
4	Уравнение реакции горения пропана	1
5	Расчет теплоты сгорания пропана	2
6	Расчет массы сожженного образца	1
ИТОГО		

ЗАДАНИЕ 10.3. (Источник – ЕГЭ 2023)

Раствор аммиака смешали с раствором бромоводорода. Все вещества прореагировали полностью. К образовавшемуся раствору прилили раствор нитрата серебра. При этом образовался раствор массой 1 кг с массовой долей растворенного вещества 24%. Вычислите массовую долю нитрата серебра в добавленном растворе. Считать, что растворимость аммиака при н.у. составляет 640 л на 1 л воды, а бромоводорода — 560 л на 1 л воды.

РЕШЕНИЕ:

Раствор NH₃:

w = 485,7/1485,7 = 0,327 или 32,7%

Раствор НВг:

w = 2025/3025 = 0,669 или 66,9%

 $NH_3 + HBr = NH_4Br (1)$

 $NH_4Br + AgNO_3 = AgBr \downarrow + NH_4NO_3$ (2)

 $m (NH_4NO_3) = 240r$

 $n (NH_4NO_3) = 240/80 = 3$ моль

 $n (NH_4Br) = 3$ моль по уравнению (2)

 $n (AgNO_3) = 3 моль$

n (AgBr) = 3 моль; m(AgBr) = 564г

 $m_{\text{MCX. ppa}} = 564 + 1000 = 1564\Gamma$

 $m_{ppa} (AgNO_3) = 1045\Gamma$

 $w(AgNO_3) = 510/1045 = 0,488$ или 48,8%

ОЦЕНИВАНИЕ:

№	Содержание критерия	Баллы
1	Уравнение реакций 2х1	2
2	Расчет массовой доли раствора аммиака	1
3	Расчет массовой доли раствора бромоводорода	1
4	Расчет массы и количества вещества нитрита аммония	2
5	Расчет массы и количества вещества	1
6	Расчет массы исходного раствора нитрата серебра	2
7	Расчет массовой доли нитрита серебра в прилитом растворе	1
ИТОГО		

ЗАДАНИЕ 10.4. (Источник - Олимпиада «Ломоносов», 2017 год)

Расшифруйте следующую схему превращений, если известно, что соединение ${\bf A}$ – циклоалкен, а массовая доля брома в соединении ${\bf B}$ в 1,3306 раза больше массовой доли брома в соединении ${\bf G}$.

Напишите уравнения протекающих реакций, укажите структурные формулы соединений.

$$\mathbf{A} \xrightarrow{\operatorname{Br}_{2}, h \vee} \mathbf{B} \xrightarrow{\operatorname{NaOH}} \mathbf{F} \xrightarrow{\operatorname{NaOH}} \mathbf{F} \xrightarrow{\operatorname{KMnO}_{4}} \mathbf{H}^{+} \rightarrow \mathbf{H} \xrightarrow{t^{\circ}} \mathbf{E}$$

РЕШЕНИЕ:

Формула циклоалкена ${\bf A}$ - ${\bf C}_{\rm n}{\bf H}_{2{\rm n-6}}$

Можно предположить, что соединение \mathbf{F} – это продукт замещения водорода в \mathbf{A} на бром, а продукт \mathbf{B} – продукт присоединения брома к \mathbf{A} по кратной связи.

Найдем соотношение массовых долей брома в этих соединениях:

$$\frac{160}{12n+2n-2+160}: \frac{80}{12n+2n-2+79} = 1,33306$$

Получаем n=6. Циклоалкен A – это C_6H_{10}

1)
$$+ Br_2 \xrightarrow{CBET} + HBr$$

2) Br
$$+ NaOH \xrightarrow{\text{спирт}} + NaBr + H_2O$$

Br
$$+ 2NaOH \xrightarrow{\text{спирт}} + 2NaBr + 2H_2O$$
 Br

5)
$$+ 18KMnO_4 + 27H_2SO_4 \rightarrow 5$$
 COOH $+ 10CO_2 + 18MnSO_4 + 9K_2SO_4 + 32H_2O$ COOH

ОЦЕНИВАНИЕ:

№	Содержание критерия	Баллы
1	Общая формула циклоалкена	1
2	Формула Б	1
3	Формула В	1
4	Расчет n=6	1
5	Уравнения реакций 6х1	6
ИТОГО		10

ЗАДАНИЕ 10.5. (Источник – ВОШХ, г. Нижний Новгород, 1998 год)

В пронумерованных пробирках находятся растворы следующих веществ: нитрата цинка, нитрата бария, соляной кислоты, серной кислоты и карбоната натрия. Не используя других реагентов, предложите способ идентификации указанных веществ. Составьте таблицу по определению веществ. Напишите уравнения необходимых химических реакций. **РЕШЕНИЕ:**

	$Zn(NO_3)_2$	Ba(NO ₃) ₂	HCl	H ₂ SO ₄	Na ₂ CO ₃
$Zn(NO_3)_2$	X				↓белый; ↑ газ
Ba(NO ₃) ₂		X		√белый	√белый
HCl			X		↑газ
H ₂ SO ₄		√белый		X	↑газ
Na ₂ CO ₃	↓ белый; ↑газ	√белый	↑газ	↑газ	X

- 1. $Na_2CO_3 + 2 HCl = 2 NaCl + CO_2 \uparrow + H_2O$
- 2. $Na_2CO_3 + H_2SO_4 = Na_2SO_4 + CO_2 \uparrow + H_2O$
- 3. $H_2SO_4 + Ba(NO_3)_2 = BaSO_4 \downarrow + 2 HNO_3$
- 4. $Na_2CO_3 + Ba(NO_3)_2 = BaCO_3 \downarrow + 2 NaNO_3$
- 5. $H_2SO_4 + Zn(NO_3)_2 = ZnCO_3 \downarrow + 2 NaNO_3$

Одновременно с образованием $ZnCO_3$ идет осаждение продукта его гидролиза - менее растворимого $Zn(OH)_2$:

6. $Na_2CO_3 + Zn(NO_3)_2 + H_2O = Zn(OH)_2 \downarrow + 2 NaNO_3 + CO_2 + H_2O$

Осадки BaCO₃, ZnCO₃, Zn(OH)₂ растворяются в HCl.

ОЦЕНИВАНИЕ:

№	Содержание критерия	Баллы	
1	Составление (наличие) таблицы		
2	Наличие признаков реакции в таблицы (12x0,25)	3	
3	Уравнения реакций 6х1	6	
ИТОГО			