Муниципальный этап Всероссийской олимпиады школьников по химии 11 класс 2023-2024 учебный год

Общее время выполнения работы – 4 часа.

Общие указания: если в задаче требуются расчёты, они обязательно должны быть приведены в решении. Ответ, приведённый без расчётов или иного обоснования, не засчитывается. Используйте Периодическую таблицу химических элементов, таблицу растворимости и непрограммируемый калькулятор.

Максимальное количество баллов – 58 баллов

Задание 11-1. (10 баллов)

При пропускании паров воды через оксид кальция масса реакционной смеси увеличилась на 9,65%. Определите процентный состав полученной твердой смеси.

Критерии оценивания

Содержание верного ответа и указания по оцениванию	Баллы
(допускаются иные формулировки ответа, не искажающие его смысла)	
Запишем уравнения химической реакции:	1
$CaO + H_2O = Ca(OH)_2$	
Конечная смесь является твердым веществом и может состоять	1
только из гидроксида кальция или смеси оксида с гидроксидом кальция,	
поэтому можно сделать вывод, что вода прореагировала полностью и	
прирост массы реакционной смеси равен массе прореагировавшей воды.	
Проведем расчеты:	1
пусть исходное количество оксида кальция равна х моль, тогда:	
масса прореагировавшей воды:	
$m(H2O) = M(CaO) \cdot n(CaO \ ucx) \cdot \omega = (40+16) \cdot x \cdot 0.0965 = 5.4x$	
Количество моль прореагировавшей воды: $n(H2O) = 5.4x/18 = 0.3x$	1
т.к. по уравнению реакции СаО и Н2О реагируют в соотношении 1:1,	
количество реагирующих веществ равны:	
n(CaOpeas) = n(H2O) = n(Ca(OH)2) = 0.3x	
Зная количества веществ можно определить массы оставшегося СаО и	2
образовавшегося Са(ОН)2:	
n(CaO) = x-0.3x=0.7x	
$m(CaOocm.) = 0.7 \cdot x \cdot (40+16) = 39.2x,$	
$m(Ca(OH)2) = (40+32+2) \cdot 0.3x = 22.2x$	1
При этом общая масса конечной смеси:	1
m(cmecu) = 39,2x + 22,2x = 61,4x	
$\omega(CaO) = 39.2x / 61.4x \cdot 100\% = 63.84\%$	2
$\omega(Ca(OH)2) = 22.2x/61.4x\cdot100\% = 36.16\%$	
Итого	10

Те же результаты можно получить, предположив, что исходная смесь содержит 1 моль оксида кальция, т.е. x = 1.

Система оценивания:

- 1 Уравнение химической реакции 1 балла
- 2 Обоснованный вывод о том, что вода прореагировала полностью 1 балл
- 3 Обоснованный вывод о том, что представляет собой полученная смесь 2 балла
- 4 Расчет массы СаО в полученной смеси 2 балла

5 Расчет массы Са(ОН)2 в полученной смеси 1 балл

6 Расчет массы полученной смеси 1 балл

7 Расчет w(CaO) 1 балл

8 Расчет w(Ca(OH)2) 1 балл

ИТОГО: 10 баллов

Задание 11-2 (10 баллов)

Дана схема следующих превращений

- 1) Укажите структурные формулы веществ А Ж
- 2) Укажите структурные формулы веществ из смеси 3 продуктов.

Критерии оценивания

Содержание верного ответа и указания по оцениванию	Баллы
(допускаются иные формулировки ответа, не искажающие его смысла)	
CH3CH2CH2CH2CH3 \rightarrow C6H6 + 4H2 (A)	
$C6H6 + CH3C1 \xrightarrow{AlCl3} \rightarrow C6H5CH3 + HCl (\mathbf{E})$	
$C6H5CH3+^{csem} \rightarrow C6H5CH2Cl+HCl$ (B)	
С6H5CH3 + C12 AlCl3 \rightarrow C6H4CH3 (орто-хлортолуол)+HCl (Γ или Д)	
С6H5CH3 + Cl2 AlCl3 → C6H4CH3 (пара-хлортолуол)+HCl (Д или Γ)	
$2 Opmo$ -хлортолуол $+2Na \rightarrow$ вещество (E) или (Ж) $+2NaCl$	
2 Пара-хлортолуол $+2Na \rightarrow вещество (Ж) или (E) +2NaCl$	
$Opmo$ -хлортолуол $+$ пара-хлортолуол $+$ $2Na o$ вещество $3+\Gamma+\Pi$	
За уравнения реакций и формулы веществ А – Ж	1*7=7 б.
За вещества смеси	1*3=3 б.
ИТОГО	10 б.

Задание 11-3 (16 баллов).

Три изомерных углеводорода (\mathbf{A} , \mathbf{B} , \mathbf{C}), массовая доля водорода в которых составляет 14,3 % и относительная плотность паров которых по гелию равна 21, обесцвечивают бромную воду и легко окисляются водным раствором перманганата калия. При жёстком окислении (перманганатом калия в кислой среде) изомер \mathbf{A} образует кетон и карбоновую кислоту, изомер \mathbf{B} — смесь двух разных кислот, изомер \mathbf{C} — только одну карбоновую кислоту. При гидратации изомеров \mathbf{B} и \mathbf{C} образуются вторичные спирты, а при гидратации изомера \mathbf{A} — третичный спирт.

- 1. Определите молекулярную и структурные формулы изомеров **A**, **B** и **C**, назовите их, используя правила систематической номенклатуры.
- 2. Напишите уравнения следующих реакций:
- а) взаимодействия изомера А с бромной водой;
- б) взаимодействия изомера В с водным раствором перманганата калия;
- в) окисления изомеров А, В и С подкисленным раствором перманганата калия;
- г) гидратации всех трёх изомеров.

Назовите продукты реакций и укажите условия их протекания.

3. Могут ли соединения **A**, **B** и **C** существовать в виде цис-транс-изомеров? Если да, то приведите соответствующие структурные формулы.

Критерии оценивания

Содержание верного ответа и указания по оцениванию	Баллы
(допускаются иные формулировки ответа, не искажающие его смысла)	
1. Определение молекулярной и структурных формул изомеров А, В и С.	3
1). Формула искомого углеводорода – СхНу.	
Допустим, что $m(CxHy) = 100$ г, тогда $m(C) = 85,7$ г, $m(H) = 14,3$ г	
n(C) = 85,7 / 12 = 7,14 моль; $n(H) = 14,3 / 1 = 14,3$ моль.	
x : m = n(C) : n(H) = 7,14 : 14,3 = 1 : 2.	
Простейшая формула — CH2; $M(CH2) = 14 \text{ г/моль}$.	
$M(CxHy) = 42 \cdot 2 = 84 \Gamma/MOЛЬ,$	
2). 84:14=6, следовательно, $x = 6$, $y = 12$	
Молекулярная формула углеводородов — C_6H_{12}	
3) Исходя из описания химических свойств изомеров А, В и С, эти	
углеводороды относятся к алкенам.	

4) При жёстком окислении изомера A образуется кетон и карбоновая кислота. Следовательно, этим изомером является 2-метилпентен-2. H_3C - $C(CH_3)$ = CH - CH_2 - CH_3 + $[O]$ $\rightarrow H_3C$ - CO - CH_3 + CH_3 - CH_2 - $COOH$	1
H_3C - $C(CH_3)=CH$ - CH_2 - $CH_3+[O] \rightarrow H_3C$ - CO - CH_3+CH_3 - CH_2 - $COOH$	
2-метилбутен-2 ацетон пропионовая кислота	
5) Жёсткое окисление изомера В приводит к образованию двух различных 1	1
карбоновых кислот. Следовательно, В – гексен-2.	
$H_3C\text{-}CH=CH\text{-}CH_2\text{-}CH_2\text{-}CH_3+[O] \rightarrow CH_3COOH+CH_3CH_2COOH$	
гексен-2 (В) уксусная кислота масляная кислота	
6)Только одна карбоновая кислота образуется при жёстком окислении 1	1
гексена-3 (изомер C).	
$H_3C-CH_2-CH=CH-CH_2-CH_3+[O] \rightarrow 2CH_3CH_2COOH$	
гексен-3 (С) пропионовая кислота	
$2.a)H_3C-C(CH_3)=CH-CH_2-CH_3+Br_2(so\partial H.p-p)\rightarrow H_3C-C(CH_3)(Br)CH(Br)CH2-1$	1
CH3	
$6)3H_3C-CH=CH-CH_2-CH_2-CH_3+2KMnO_4+4H_2O\rightarrow 2KOH+2MnO_2+$	1
$3H_3CCH(OH)CH(OH)CH_2CH_3$	-
$6)5H_3C-C(CH_3)=CH-CH_2-CH_3+6KMnO_4+9H_2SO_4+5CH_3-CH_2-COOH+1$	1
$5H_3C$ - CO - $CH_3 + 3K_2SO_4 + 6MnSO_4 + 9H_2O$	•
$c)5H_3C-CH=CH-CH_2-CH_3+8KMnO_4+12H_2SO_4 \rightarrow 5CH_3-COOH+$	1
5CH ₃ -CH ₂ -CH ₂ -COOH	1
δ)5H ₃ C-CH ₂ -CH ₂ -CH ₂ -CH ₃ +8KMnO ₄ +12H ₂ SO ₄ \rightarrow 10CH ₃ -CH ₂ COOH	 1
$+4 K_2 SO_4 + 8 Mn SO_4 + 12 H_2 O$	1
e) $H_3C-C(CH_3)=CH-CH_2-CH_3+H_2O^{H2SO4}(K) \rightarrow H_3C-C(OH)(CH_3)-CH_2-CH_2-CH_3$ 1	1
	1
А 2-метилпентанол-2	
(третичный спирт)	
ALCOHOLOUGH OH OH HEAPSON HEACH CHOLD CHECK ON	1
\mathbf{x})H ₃ C-CH=CH-CH ₂ -CH ₂ -CH ₃ +H ₂ O ^{H2SO4} \rightarrow H ₃ C-CH ₂ -CH(OH)-CH ₂ -CH ₂ -CH ₃	1
гексанол-3	
(вторичный спирт)	
3) $H_3C-CH_2CH=CH-CH_2-CH_3+H_2O^{H2SO4}\rightarrow H_3C-CH_2-CH(OH)-CH_2-CH_2-CH_3$	1
гексанол-3	
3. Изомеры В и С имеют геометрические изомеры, изомер А – не имеет.	2
транс-гексен-2, цис-гексен-2; транс-гексен-3, цис-гексен-3	
ΙΤΟΓΟ	16

Система оценивания.

Определение молекулярной формулы изомеров А, В, С- 3 балла

Определение структурных формул изомеров **A**, **B**, **C** и составление их названий -**3 балла**

Уравнения реакций (а)—(з) с использованием структурных формул изомеров (по **1 баллу** за уравнение реакции), всего **8 баллов**

Структурные формулы геометрических изомеров -2 балла

Итого: 16 баллов

Задание 11-4. (16 баллов)

Вещество $\bf A$ обычно встречается в горных породах в виде разных минералов, которых используют в строительстве. При нагревании до температуры 1000° С, образуются вещества $\bf B$ и $\bf C$. Оба вещества $\bf B$ и $\bf C$ по отдельности реагируют с

углеродом при высоких температурах. Вещество ${\bf B}$ и углерод образуют солеобразное соединение \mathbf{D} и газ \mathbf{E} , который одновременно является продуктом реакции между соединением С и углеродом, а также газ Е является одним из компонентов синтез-газа. Вещества ${\bf B}$, ${\bf C}$ и ${\bf D}$ реагируют с водой, то в двух реакциях образуется соединение ${\bf F}$ основного характера и соединения ${\bf H}$ и ${\bf G}$, два последних содержат заменяемый с помощью металлов водород. При пропускании вещества Н над активированным углем при $t = 600^{\circ} \text{C}$ можно получить ароматическое соединение. К веществу Н можно каталитически присоединить и воду, и хлористый водород, и в том, и в другом случае Вы получите важные исходные вещества органической химии, \mathbf{K} и \mathbf{I} соответственно, которые легко доступны, и из них можно получить в частности, пластическое вещество \mathbf{L} , спирт \mathbf{M} и кислоту \mathbf{N} . Если вещество \mathbf{C} поместить в насыщенный раствор \mathbf{F} , то сначала образуется вещество \mathbf{A} , который постепенно растворяется при дальнейшем пропускании через раствор вещества С и превращается в вещество Р. Вещество D дает при температуре 10730К с компонентом воздуха технически важный продукт **Q**, из которого ранее получали аммиак путем добавления воды.

- 1. Укажите формулы веществ **A**, **B**, **C**, **D**, **E**, **F**, **G**, **H**, **I**, **K**, **L**, **M**, **N**, **P**, **Q** и дайте их названия.
- 2. Приведите все уравнения реакций, о которых идет речь в задаче.

Критерии оценивания

Критерии. Содержание верного ответа и указания по оцениванию	Баллы
(допускаются иные формулировки ответа, не искажающие его смысла)	
1.Определены вещества и даны их названия (за каждое по 0,5 балла);	8
А - СаСО3 (карбонат кальция); В – СаО (оксид кальция) С - СО2 (оксид	
углерода (IV); D - CaC ₂ (карбид кальция); $E - CO$ (оксид углерода (II);	
F – Ca(OH) ₂ (гидроксид кальция)	
H - C ₂ H ₂ (ацетилен); G - H ₂ CO ₃ (угольная кислота)	
К - CH ₃ - COH (этаналь); I - CH ₂ = CHCl (хлорэтен)	
L - (-CH ₂ - CHCl-)n (поливинилхлорид); М - С ₂ H ₅ OH (этанол)	
N- CH ₃ COOH (уксусная кислота); А - CaCO ₃ (карбонат кальция)	
Р - Са(НСО ₃) ₂ (гидрокарбонат кальция);	
Q – CaCN ₂ (цианамид кальция)	
2.Приведены уравнения реакций (по 0,5 балла за каждое)	8
$CaCO_3 = CaO + CO_2 (1)$	
$CaO + C = CaC_2 + CO(2)$	
$CO_2 + C = 2CO(3)$	
CaO + H2O = Ca(OH)2 (4)	
$CaC_2 + 2H_2O = Ca(OH)_2 + C_2H_2$ (5)	
$CO_2 + H_2O \leftrightarrow H_2CO_3$ (6)	
$3C_2H_2 \to C_6H_6$ (7)	
$C_2H_2 + H_2O \rightarrow CH_3 - COH (8)$	
$C_2H_2 + HCl \rightarrow CH_2 = CHCl (9)$	
$nCH_2 = CHCl \rightarrow (-CH_2 - CHCl-)n (10)$	
$CH_3 - COH + H_2 \rightarrow C_2H_5OH (11)$	
$CH_3 - COH + 2Cu(OH)_2 \rightarrow CH_3COOH + Cu_2O + 2H_2O$ (12)	
$CO_2 + Ca(OH)_2 = CaCO_3 \downarrow + H_2O (13)$	
$CaCO_3 \downarrow + H_2O + CO_2 = Ca(HCO_3)_2 (14)$	
$CaC_2 + N_2 = CaCN_2 + C (15)$	

$CaCN_2 + 3H_2O = 2NH_3 + CaCO_3$ (16)	
Максимальный балл	16

Задание 11-5 (6 баллов).

Взаимодействие 128 г карбида кальция с водой сопровождается выделением 253,76 кДж теплоты. Вычислите стандартную теплоту образования кристаллического гидроксида кальция, используя тепловые эффекты следующих реакций:

$$Ca(T) + 2C(T) = CaC_2(T) + 62,7$$
 кДж

$$H_2(\Gamma) + 0.5O_2(\Gamma) = H_2O(ж) + 285.84$$
 кДж

$$2C(T) + H_2(\Gamma) = C_2H_2(\Gamma) - 226,75$$
 кДж

а также реакции взаимодействия карбида кальция с водой. Рассчитайте, какая масса карбида кальция потребуется для получения 1 м³ ацетилена

Критерии оценивания.

Содержание верного ответа и указания по оцениванию	Баллы
(допускаются иные формулировки ответа, не искажающие его смысла)	
Напишем уравнение взаимодействия карбида кальция с водой:	1
$CaC_2 + 2H_2O = Ca(OH)_2 + C_2H_2$ (1)	
Определим, какое количество карбида кальция вступило в реакцию:	1
$n(CaC_2) = 128:64 = 2$ моль	
Тогда тепловой эффект данной химической реакции равен:	1
При взаимодействии 2 моль СаС ₂ выделяется 253,76 кДж теплоты	
При взаимодействии 1 моль СаС2 выделяется Х кДж теплоты	
X = 253,76/2 = 126,88 кДж	
Чтобы вычислить теплоту образования гидроксида кальция, запишем	1
уравнение для расчета теплового эффекта уравнения реакции (1):	
$Q_{xp} = Q_{o6p}[Ca(OH)_2] + Q_{o6p}(C_2H_2) - Q_{o6p}(CaC_2) - 2Q_{o6p}(H_2O)$	
Так как тепловые эффекты представленных в условии реакций	1
представляют собой теплоты образования карбида кальция, ацетилена и	
воды, то:	
$Q_{\text{oбp.}}[Ca(OH)_2] = Q_{xp} - Q_{\text{oбp.}}(C_2H_2) + Q_{\text{oбp.}}(CaC_2) + 2Q_{\text{oбp.}}(H_2O)$	
$Q_{\text{обр.}}[Ca(OH)_2] = 126,88 - (-226,75) + 62,7 + 2.285,84 = 988,01 $ кДж/моль	
1 м^3 ацетилена при нормальных условиях содержит $1000/22,4 = 44,64$ моль	1
ацетилена. Согласно уравнению реакции (1):	
$n(CaC_2) = n(C_2H_2) = 44,64$ моль	
$m(CaC_2) = 44,64.64 = 2856,96 \ \Gamma (2,857 \ KF)$	
Максимальный балл	6