Решения заданий муниципального этапа Всероссийской олимпиады школьников по химии 2023-2024 учебный год, 11 класс

Задание 11-1. (10 баллов)

Решение.

Исходя из последнего вопроса задачи, можно предположить, что вещество \mathbf{H}^1 – это углекислый газ, так как его проще всего получить из почти что любого органического соединения сжиганием. Тогда один из возможный вариантов решения выглядит следующим образом:

$$CO_{2} + Ca(OH)_{2} \longrightarrow CaCO_{3}$$

$$H^{1} \qquad H^{2}$$

$$CaCO_{3} \xrightarrow{t} CaO + CO_{2}$$

$$H^{2} \qquad H^{3} \qquad H^{4}$$

$$CaO + 3C \xrightarrow{t} CaC_{2} + CO$$

$$H^{3} \qquad H^{4} \qquad O^{1}$$

$$CaC_{2} + 2H_{2}O \longrightarrow HC \equiv CH + Ca(OH)_{2}$$

$$O^{1} \qquad O^{2}$$

$$O^{2} \qquad O^{3} \qquad O^{4}$$

$$CI + 35O_{2} \xrightarrow{t} 24CO_{2} + 22H_{2}O + 2CI_{2}$$

$$O^{4} \qquad H^{1}$$

$$O^{1} \qquad O^{2} \qquad O^{1} \qquad H^{1}$$

$$O^{2} \qquad O^{1} \qquad H^{1}$$

$$O^{2} \qquad O^{2} \qquad O^{3}$$

$$O^{2} \qquad O^{3} \qquad O^{4}$$

Критерии оценивания:

1) 10 реакций – по 1 баллу

 $1 \times 10 = 10 \, \text{fs}.$

Примечания:

При наличии правильных веществ в реакции, но с ошибками в коэффициентах ставится по 0.5 балла.

Если отсутствуют превращения O^2 в H^1 , а также O^1 в H^1 , но при этом круг превращений замкнут, максимально может быть выставлено 8 баллов (в зависимости от количества правильно написанных реакций).

При условии того, что круг реакций оказался не замкнутым ставится 50% от набранного количества баллов (например, за две полностью правильные реакции и две реакции с неправильными коэффициентами ставится: $[2\times1+2\times0.5]\times0.5=1.5$ балла).

Задание 11.2 (7 баллов) Решение и система оценивания

Элементы решения	Баллы
1. Шарики помещали в цилиндр с водой для измерения их объёма.	2 балла
Вода занимает пространство между шариками. Разность между	
уровнем воды во втором и первом измерениях соответствует объёму	
пяти исследуемых шариков.	
2. Из рисунка видно, что разность между уровнем воды во втором и	1 балл
первом измерениях равна $4.9 \text{ мл} - 2.5 \text{ мл} = 2.4 \text{ мл} = 2.4 \text{ см3}$. Таким	
образом, объём пяти исследуемых шариков составляет 2,4 см3.	
3. Масса пяти шариков: 5 · 5,04 г = 25,2 г	3 балла
Плотность металла A: $25,2$ г: $2,4$ см $3 = 10,5$ г/см 3 .	
Данная плотность соответствует серебру. Металл А – серебро	
4. На рисунке видно, что диаметр исследуемого шарика составляет	1 балл
около 1 см, точнее, чуть меньше 1 см.	

Задание 11-3. (6 баллов)

Элементы решения	Баллы
Приведена структурная формула Ментол (1-метил-3-гидрокси-4	2
изопропилциклогексан)	2
CH ₃	2
CH_3 $+$ Br_2 hv $+$ HBr OH $CH_3-CH-CH_3$ $CH_3-CBr-CH_3$ $Bозможны другие варианты$	2
ВСЕГО	6 баллов

Задание 11-4. (8 баллов)

Элементы решения	Баллы
Составлены уравнения реакций	
$S + O_2 = SO_2$	2
$SO_2 + 2KOH = K_2SO_3$	3
$5 \text{ K}_2\text{SO}_3 + 2 \text{ KMnO}_4 + 3 \text{ H}_2 \text{ SO}_4 = 6 \text{ K}_2 \text{ SO}_4 + 2 \text{ Mn SO}_4 + 3 \text{H}_2 \text{O}_4$	
В ходе реакции израсходовалось 4,8 *10 -4 моль КМпО ₄	2
Соответственно сульфита калия было 1,2 *10 -3 моль	2
Такое же количество серы было в исходном образце нефти.	
$\% S = 1.2 * 10^{-3} * 32/3 = 1.28 \%$	2
ВСЕГО	8

Задание 11-5. (10 баллов)

Элементы решения	Баллы
Составлены уравнения реакций:	
CuSO4 + Zn = ZnSO4 + Cu	2
$3Cu + 8HNO3 = 3Cu(NO3)2 + 2NO\uparrow + 4H2O$	
Рассчитано количество вещества сульфата меди(II), цинка и	
выделившейся меди:	
$m(CuSO4) = 160 \cdot 0.05 = 8 \Gamma$	
n(CuSO4) = 8 / 160 = 0.05 моль	3
n(Zn) = 1,95 / 65 = 0,03 моль	3
CuSO4 – в избытке	
n(Cu) = n(Zn) = 0.03 моль	
$m(Cu) = 64 \cdot 0.03 = 1.92 \Gamma$	
Рассчитаны количество вещества азотной кислоты, массы соли и оксида	
азота(II):	
$n(HNO3) = 60 \cdot 1,055 \cdot 0,1 / 63 = 0,1$ моль – в избытке	
n(Cu(NO3)2) = n(Cu) = 0.03 моль	3
$m(Cu(NO3)2) = 0.03 \cdot 188 = 5.64 \Gamma$	
n(NO) = 2/3n(Cu) = 0.02 моль	
$m(NO) = 0.02 \cdot 30 = 0.60 \Gamma$	
Определены масса раствора и массовая доля Cu(NO3)2 в нём:	
$m(p-pa) = 60 \cdot 1,055 + 1,92 - 0,6 = 64,62 \Gamma$	2
$\omega(\text{Cu(NO3)2}) = 5,64 / 64,62 = 0,087$, или $8,7\%$	
ВСЕГО	10