Муниципальный этап всероссийской олимпиады школьников по химии 2023-2024 учебный год

Решения и критерии оценивания

11 класс Максимальное количество баллов за все правильно выполненные задания - 50 Задача 1.

Эиди ти т.	
Содержание верного ответа и указания по оцениванию	
(допускаются иные формулировки ответа, не искажающие его	Баллы
смысла)	
1) $X_1 - \text{FeS}_2$	По 0,5 балла за
$X_2 - SO_2$	формулу
$X_3 - H_2SO_4$	каждого
$X_4 - HCl(p-p)$	соединения
$X_5 - Fe_2O_3$ (или Fe_3O_4)	Итого 4 балла
$X_6 - Fe$	
$X_7 - \text{FeCl}_3$	
$X_8 - \text{Fe}(OH)_3$	
2) $4\text{FeS}_2 + 11\text{O}_2 = 2\text{Fe}_2\text{O}_3 + 8\text{SO}_2$	1
или $6\text{FeS}_2 + 16\text{O}_2 = 2\text{Fe}_3\text{O}_4 + 2\text{SO}_2$	
3) $SO_2 + H_2O_2 = H_2SO_4$	1
4) H2SO4 + BaCl2 = BaSO4 + 2HCl	1
$5) Fe_2O_3 + 3H_2 = 2Fe + 3H_2O$ или $Fe_3O_4 + 4H_2 = 3Fe + 4H_2O$	1
6) $2\text{Fe} + 3\text{Cl}_2 = 2\text{FeCl}_3$	1
7) $FeCl_3 + 3NaOH = Fe(OH)_3 + 3NaCl$	1
Максимальный балл	10

Задача 2.

Содержание верного ответа и указания по оцениванию (допускаются иные формулировки ответа, не искажающие его смысла)	Баллы
1) Указаны вещества А, В и С:	по 1 балле за
$A-Hg$, $B-Hg_2Cl_2$ (каломель), $C-HgCl_2$ (сулема)	каждое
	вещество
	(Всего – 3)
2) Зная массовые доли хлора (металла), можно на основании	3
схемы взаимодействия металла с хлором	
$Me + n/2Cl_2 = MeCl_n$	
выразить молярную массу металла. При этом в хлориде с	
большим содержанием хлора валентность металла выше.	
Получаем два уравнения связи атомной массы металла с	
валентностью:	
$M = n_1 \cdot 200,8$ (1)	
$M = n_2 \cdot 100,4$ (2)	
Совершенно очевидно, что речь идет о металле, который	
проявляет валентности I и II. В других случаях значения	
молярной массы оказываются из категории несуществующих.	

Металл – ртуть.	
3) Диспропорционирование каломели при нагревании свыше	1,5
400 °C: $Hg_2Cl_2 = HgCl_2 + Hg$	
4) Сопропорционирования сулемы и ртути при нагревании до	1,5
$250-300$ °C: $HgCl_2 + Hg = Hg_2Cl_2$	
5) Внутримолекулярного окисления-восстановления сулемы	1
при прокаливании: $HgCl_2 = Cl_2 + Hg$	
6) Окисления каломели концентрированной азотной кислотой	2
при нагревании:	
$Hg_2Cl_2 + 4HNO_3 = HgCl_2 + Hg(NO_3)_2 + 2 NO_2 + 2 H_2O$	
Максимальный балл	12

Задача 3.

Содержание верного ответа и указания по оцениванию	
(допускаются иные формулировки ответа, не искажающие его	Баллы
смысла)	2
1) CuS + 10HNO3конц=Cu(NO3)2 + H2SO4 + 8NO2 + 4H2O	2
2) По условию: n(CuS) = m : M = 7,2 г : 96 г/моль = 0,075 моль	1
$n(HNO_3) = (\rho \cdot \omega \cdot V) / M(HNO_3) = (1,38 \cdot 0,63 \cdot 61,6) / 63 = 0,85$ моль	4
3) По уравнению $n(HNO_3) = 10n(CuS) = 0,75$ моль.	1
В избытке осталось 0,1 моль азотной кислоты.	
В результате образовалось $n(H_2SO_4) = 0.075$ моль,	
$n(NO_2) = 8 \cdot 0.075 = 0.6$ моль.	
4) Масса раствора перед электролизом:	1
$m_{p-pa} = m_{p-pa}(HNO_3) + m(CuS) - m(NO_2) + m(H_2O) =$	
$1,38.61,6+7,2-0,6.46+250=314,6\Gamma$	
5) Уравнение электролиза:	1
$2 \text{ Cu(NO}_3)_2 + 2 \text{ H}_2\text{O} = 2 \text{ Cu} + 4 \text{ HNO}_3 + \text{O}_2$	
6) По уравнению $n(Cu) = n(Cu(NO_3)_2) = n(CuS) = 0.075$ моль;	1
$n(O_2) = 0.0375$ моль; $n(HNO_3) = 0.15$ моль.	
$m(Cu) = 0.075 \cdot 64 = 4.8 \Gamma.$	
7) По условию задачи газ выделяется не только на аноде, но и на	1
катоде. Это значит, что идет электролиз воды с выделением	
водорода: $2H_2O = 2H_2 + O_2$	
8) Пусть на катоде выделилось х моль водорода, тогда составим	2
уравнение:	
$n(H_2) = n(O_2); x = 0.0375 + 0.5x$	
Отсюда $x = 0.075$ моль. Следовательно, разложилось, $n(H_2O) =$	
0,075 моль.	
9) Масса раствора после электролиза m1:	1
$m_{1p-pa} = m_{p-pa} - m(Cu) - m(O_2) - m(H_2O) = 314.6 - 4.8 - 0.0375.32$	
$0.075 \cdot 18 = 307.25 \Gamma$	
$\omega(\text{H}_2\text{SO}_4) = (0.075 \text{ моль} \cdot 98 \text{ г/моль}) : 307.25 = 0.024 \text{ или } 2.4\%$	
10) Общее количество вещества азотной кислоты:	1
$n(HNO_3) = 0.15 + 0.1 = 0.25$ моль	
$\omega(\text{HNO}_3) = (0.25\text{моль} \cdot 63\text{ г/моль}) : 307.25 = 0.053$ или 5.3 %.	
Максимальный балл	12
	_

Задача 4.

, , , , , , , , , , , , , , , , , , , ,	
Содержание верного ответа и указания по оцениванию	F
(допускаются иные формулировки ответа, не искажающие его	Баллы
смысла)	
1) Уравнение гидролиза в общем виде:	1
$H_2NCH(R_1)CONHCH(R_2)COOH + 2 NaOH = H_2NCH(R_1)COONa +$	
$H_2NCH(R_2)COONa + 2H_2O$	
2) Молярная масса одной из солей:	1
$M = M(Na) : \omega(Na) = 23 : 0,2072 = 111$ г/моль.	
Количество вещества этой соли: $n=m: M=11,1:111=0,1$ моль.	
Молекулярная масса радикала, входящего в ее состав:	
$M(R_1)=111 - M(NH_2) - M(CH) - M(COONa) = 111 - 16 - 13 - 67 = 15.$	
Этот радикал R ₁ - CH ₃	
3) M (дипептида) = $m : n = 14.6 : 0.1 = 146$ г/моль.	1
$M(R_2) = M(дипептида) - M(NH_2) - M(CHR_1) - M(CONH) - M(CH)$	
-M(COOH)= 146 - 16 - 28 - 43 - 13 - 45 =1	
Этот радикал R_2 - H .	
Таким образом, в результате реакции образовались соли	
аминопропионовой и аминоуксусной кислот.	
4) Для такого сочетания возможно существование двух	2
пептидов:	
1) H ₂ N - CH(CH ₃) - CO - NH - CH ₂ - COOH аланилглицин;	
2) H ₂ N - CH ₂ - CO - NH - CH(CH ₃) - COOH глицилаланин.	
5) Рассчитаем объем раствора щелочи, вступившей в реакцию.	1
n(NaOH) = 2n(дипептида) = 0,2 моль.	
$m(NaOH) = 0,2моль \cdot 40г/моль = 8г.$	
mp-pa = $m(NaOH)$: $\omega(NaOH) = 8$: $0.12 = 66.7r$.	
$V = mp-pa : \rho = 66,7\Gamma : 1,2 \Gamma/MЛ = 55,6 MЛ$	
Максимальный балл	6

Задача 5.

Sugara et	
Содержание верного ответа и указания по оцениванию	
(допускаются иные формулировки ответа, не искажающие его	Баллы
смысла)	
1) NaBiO ₃ + 6HCl \rightarrow NaCl + BiCl ₃ +Cl ₂ + 3H ₂ O	2
2) $Fe2(CO)9 + 4HC1 \rightarrow 2FeCl_2 + 2H_2 + 9CO$	2
3) Fe + $2KNO_3 \rightarrow K_2FeO_4 + 2NO$	2
4) $Pb_3O_4 + 4HNO_3 \rightarrow 2Pb(NO_3)_2 + PbO_2 + 2H_2O$	2
5) 5CH ₃ -CH=CH ₂ -CH ₃ + 8NaMnO ₄ + 12H ₂ SO ₄ → 10CH ₃ COOH +	2
$8MnSO_4 + 4Na_2SO_4 + 12H_2O$	
Максимальный балл	10