

ВС{}Ш ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ 2023/2024 гг. МУНИЦИПАЛЬНЫЙ ЭТАП

КИМИХ 11 КЛАСС

Ключи для членов жюри

Время выполнения заданий – 220 минут

(180 минут – теоретический, 40 минут – практический тур)

Максимальное количество баллов – 67

Задание 1:

Допишите уравнения окислительно-восстановительных реакций, расставьте коэффициенты, определите окислитель и восстановитель:

 $KOH + C + N_2 \rightarrow$

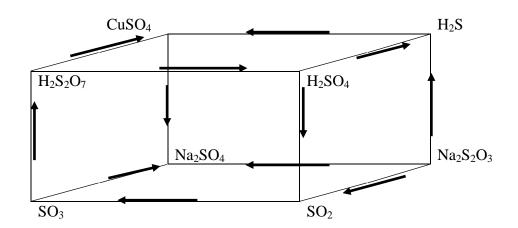
 $KBiO_3 + MnSO_4 + H_2SO_4 \rightarrow$

 $Au + NaCN + O_2 + H_2O \rightarrow$

 $Na_2SnO_2 + Bi(NO_3)_3 + NaOH \rightarrow$

Решение

Элементы решения	Баллы
$2KOH + 4C + N_2 \rightarrow 2KCN + 2CO + H_2$	4 балла
$C^0 - 2e \rightarrow C^{+2}$ восстановитель	
N_2^0 +6e $\rightarrow 2N^{-3}$ окислитель	
$2H^{+1} + 2e \rightarrow H_2$ окислитель	
$10KBiO_3 + 4MnSO_4 + 14 H_2SO_4 \rightarrow 4KMnO_4 + 3K_2SO_4 + 5Bi_2(SO_4)_3 + 14H_2O$	3 балла
$2Bi^{+5}$ $+4e \rightarrow 2Bi^{+3}$ окислитель	
Mn^{+2} –5е $\rightarrow Mn^{+7}$ восстановитель	
$3Na_2SnO_2 + 2Bi(NO_3)_3 + 6NaOH \rightarrow 2Bi + 3Na_2SnO_3 + 6NaNO_3 + 3H_2O$	3 балла
$\operatorname{Sn}^{+2} - 2e \rightarrow \operatorname{Sn}^{+4}$ восстановитель	
Bi^{+3} $+3e \rightarrow Bi^{0}$ окислитель	
$4Au + 8NaCN + O_2 + 2H_2O \rightarrow 4Na[Au(CN)_2] + 4NaOH$	3 балла
$Au^0 - 1e \rightarrow Au^{+1}$ восстановитель	
$O_2^{0} + 4e \rightarrow 2O^{-2}$ окислитель	
Итого	13 баллов
Допускаются иные формулировки ответа, не искажающие его смысла	


Задание 2:

Осуществите превращения соединений меди, составьте уравнения возможных реакций.

ВС{} Ш ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ 2023/2024 гг. МУНИЦИПАЛЬНЫЙ ЭТАП

КИМИХ 11 КЛАСС

Решение

Элементы решения	Баллы
$5H_2SO_4 + 4Mg \rightarrow 4MgSO_4 + H_2S + 4H_2O$	1 балл
$2H_2SO_4 + Cu \rightarrow CuSO_4 + SO_2 + 2H_2O$	1 балл
$SO_3 + 2NaOH \rightarrow Na_2SO_4 + H_2O$	1 балл
$Na_2S_2O_3 + 2HCl + H_2O \rightarrow 2NaCl + H_2S + H_2SO_4$	1 балл
$Na_2S_2O_3 + 2HCl \rightarrow 2NaCl + SO_2 + S + H_2O$	1 балл
$H_2SO_4 + SO_3 \rightarrow H_2S_2O_7$	1 балл
$H_2S_2O_7 + H_2O \rightarrow 2H_2SO_4$	1 балл
$2SO_2 + O_2 \rightarrow 2SO_3$	1 балл
$2H_2S_2O_7 + Cu \rightarrow 2H_2SO_4 + CuSO_4 + SO_2$	1 балл
$Na_2S_2O_3 + 2HNO_3 \rightarrow 2Na_2SO_4 + 2NO_2 + S + H_2O$	1 балл
$CuSO_4 + 2NaOH \rightarrow Cu(OH)_2 + Na_2SO_4$	1 балл
$H_2S + 5Cl_2 + 4H_2O + Cu \rightarrow CuSO_4 + 10HCl$	1 балл
Итого	12 баллов
Допускаются иные формулировки ответа, не искажающие его смысла	

Задание 3.

Осуществите цепочку превращений органических соединений:

Вещество X_3 содержит по массе 25,21% углерода, 6,72% кислорода, 10,09% магния и 53,36%

Составьте уравнения реакций превращений органических соединений.

Решение

1 cmenne	
Элементы решения	Баллы
Проверим все ли элементы представлены $100 - 25,21 - 6,72 - 10,09 - 53,36 = 4,62$	0,5 балла
% это водород	
C : H : O : Mg : I	1,5 балла
<u>25,21</u> : <u>4,62</u> : <u>6,72</u> : <u>10,09</u> : <u>53,36</u>	

ВС{}Ш ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ 2023/2024 гг. МУНИЦИПАЛЬНЫЙ ЭТАП

КИМИХ 11 КЛАСС

Допускаются иные формулировки ответа, не искажающие его смысла	
Всего	8 баллов
CH ₃ O	
5 $H_3C - CH_2 - C - CH_3 + 5 CO_2 + 8 MnSO_4 + 4 K_2SO_4$	+ 22 H ₂ O
CH ₃ t ^o	2 балла
H_3C-CH_2 $\overset{\leftarrow}{C}-O-Mg$ -I + H_2O \longrightarrow H_3C-CH_2 $\overset{\leftarrow}{C}-OH$ + $MgOHI$ $\overset{\leftarrow}{C}H_3$	
ÇH ₃	1,5 балла
CH ₃	
H ₃ C—C—CH ₃ T H ₃ C—CH ₂ -Mg·I — H ₃ C—C—O—Mg-I CH ₂	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,5 балла
	1.5 50000
t° O	
$HC \equiv C - CH_3 + H_2O$ $\xrightarrow{Hg^{2+}} H_3C - C - CH_3$	1 балл
$H_3C-C \equiv C-Ag + HCI \longrightarrow HC \equiv C-CH_3 + AgCI$	1 балл
C ₅ H ₁₁ OMgI	1.7
5 : 11 : 1 : 1	
2,1 : 4,62 : 0,42 : 0,42 : 0,42	
12 : 1 : 16 : 24 : 127	

Задание 4.

Дана смесь сложных эфиров метилацетата и метилбензоата массой 28,4 г. Для гидролиза смеси потребовалось 81,3 мл 20%-го раствора едкого натра (плотность 1,23 г/мл). По окончании гидролиза избыток щелочи нейтрализовали 20 мл 5М раствора серной кислоты. Определите массовые доли эфиров в смеси.

13 баллов

Решение

Элементы решения	Баллы
O-CH ₃ + NaOH - t° O-Na + H ₃ C-OH	1 балл
$H_3C-C \stackrel{O}{\searrow}O + NaOH \stackrel{t^o}{\longrightarrow} H_3C-C \stackrel{O}{\swarrow}O + H_3C-OH$	1 балл
$2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$	1 балл
$m_p(NaOH) = 81,3 \times 1,23 = 100 \ \Gamma$ $m_B(NaOH) = 100 \times 20 : 100 = 20 \ \Gamma$	1 балл
$\upsilon(\text{NaOH}) = 20:40 = 0,5$ моль всего	
$\upsilon(H_2SO_4) = 5 \times 20 : 1000 = 0,1$ моль	1 балл
$\upsilon(\text{NaOH}) = 0.1 \times 2 = 0.2$ моль в реакции с серной кислотой, осталось на гидролиз 0,3 моль	1 балл
Пусть υ - количество вещества метилбензоата, п - количество вещества	1 балл

ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ 2023/2024 гг. МУНИЦИПАЛЬНЫЙ ЭТАП

ХИМИЯ 11 КЛАСС

метилацетата	
v + n = 0.3 $n = 0.3 - v$	0,5 балла
m_B (метилбензоата) = 136 υ , m_B (метилацетата) = 74 n = 74(0,3 - υ)= 22,2 - 74 υ	1,5 балла
$136 \upsilon + 22.2 \text{ - } 74\upsilon = 28.4$ $\upsilon = 0.1 \text{ моль}, n = 0.3 - 0.1 = 0.2 \text{ моль}$	2 балла
\square (метилбензоата) = $136 \times 0,1 \times 100\%$: $28,4 = 47,9\%$	1 балл
\Box (метилацетата) = 74×0,2×100% : 28,4 = 52,1%	1 балл
Всего	13 баллов

Задание 5:

Котлета куриная массой 100 г содержит 55,9% воды, 22,9% белка, 16,5% жиров и 4,7% углеводов. Определите калорийность (в ккал) котлеты, если калорийность белков и углеводов составляет 17,1 кДж/г, калорийность жиров равна 38,0 кДж/г. Какой массы котлету съел Петя, если калорийность углеводов в ней составила 45,6 ккал. (1 ккал = 4,18 кДж)

6 баллов

Решение

Элементы решения	Баллы
$(4,7 \times 17,1) + (16,5 \times 38) + (22,9 \times 17,1) = 1098,96 $ кДж	2 балла
1098,96:4,18=262,9 ккал	1 балл
$45,6 \times 4,18 = 190,6 $ кДж	1 балл
$m_y = 190,6: 17,1 = 11,15 $ г	1 балл
$m_{\rm K} = 11,15 \times 100 : 4,7 = 237,2 \ \Gamma$	1 балл
Всего	6 баллов