Химия. 11 класс

Задача 1. (20 баллов)

Перманганат калия прокалили. Твердый продукт реакции обработали достаточным количеством концентрированной соляной кислоты, а выделившийся газ \mathbf{X} ввели во взаимодействие с 0,5 M угарного газа. Через некоторое время в газовой системе установилось равновесие (константа равновесия K=1). Определить:

- 1. исходную и равновесную концентрации газа X, если равновесная концентрация продукта его взаимодействия с CO равна 0,35 M;
- 2. массу прокаленного перманганата калия
- 3. объем выделившегося при прокаливании газа при температуре 27° С.

Решение и критерии оценивания.

Решение	Баллы
Приведены правильные уравнения протекающих реакций:	4 балла
$2KMnO_4 = K_2MnO_4 + MnO_2 + O_2$ (1) — 1 балл	
$K_2MnO_4 + 8HCl = MnCl_2 + 2KCl + 2Cl_2 + 4H_2O$ (2) — 1 балл	
$MnO_2 + 4HCl = MnCl_2 + Cl_2 + 4H_2O$ (3) — 1 ба лл	
$Cl_2 + CO = COCl_2$ (4) — 1 балл	
Проведен расчет равновесной и исходной концентрации хлора:	7 баллов
по условию задачи равновесная концентрация фосгена равна 0,35. По	
уравнению (4) в реакцию вступило по 0,35 М хлора и угарного газа. Пусть	
исходная концентрация хлора равна X, тогда его равновесная концентрация	
(X-0,35) M, а равновесная концентрация CO равна:	
0,5-0,35=0,15 М. По закону действующих масс: K=[COCl ₂]/([Cl ₂]·[CO])	
$1=0,35/(0,15\cdot(X-0,35))$, откуда следует, что X=1,98 моль – исходная	
концентрация хлора, а 1,98-0,35= 1,63 моль - равновесная.	
Проведен расчет массы прокаленного перманганата калия:	7 баллов
n(MnO ₂)=n(K ₂ MnO ₄)=n(Cl ₂)/3=1,98/3=0,66 моль	
n(KMnO ₄)=2n(MnO ₂)=0,66·2=1,32 моль	
$m((KMnO_4)=1,32 \text{ моль} \cdot 158 \text{ г/моль} = 208,56 \approx 209 \text{ г}$	
Рассчитан объем выделившегося кислорода при температуре 27° С:	2 балла
$n(MnO_2)=n(K_2MnO_4)=n(O_2)=0,66$ моль	
V_0 (n.y.)=0,66 моль 22,4 л/моль=14,784 л	
По закону Гей-Люссака:	
$V_0/T_0=V/T$; $V=V_0\cdot T/T_0=14,784\cdot 300/273=16,246$ л	
Итого:	20

Задача 2. (20 баллов)

К 44,5 мл раствора соляной кислоты с массовой долей 12,9 % и плотностью 1,06 г/мл медленно по каплям добавили 45%-ный раствор гидроксида натрия (ρ =1,48 г/мл) до полной нейтрализации. Полученный раствор охладили до 0° С. Известно, что массовая доля соли в насыщенном при данной температуре растворе равна 22, 2%. Определить:

- 1. Объем введенного в реакцию раствора гидроксида натрия.
- 2. Выпал ли осадок соли при охлаждении раствора?
- 3. Какую массу 12%-ного раствора нитрата серебра нужно внести в реакционную смесь для полного осаждения имеющегося хлорид-иона?

Решение и критерии оценивания.

Решение	Баллы
Приведены правильные уравнения протекающих реакций:	2
HC1 + NaOH = NaC1 + H2O (1)	
$NaCl+AgNO_3 = AgCl + NaNO_3(2)$	
Проведен расчет количества соляной кислоты, гидроксида натрия и его	4
объема, а также масс обоих растворов и массы хлорида натрия:	
$n(HCl)=44,5\cdot 1,06\cdot 0,129/36,5=0,167$ моль; $m(HCl)_{p-p}=47,17$ г	
n(HCl)=n(NaOH)= n(NaCl)= 0,167 моль	
$V(NaOH)=0,167 \cdot 40/(0,45 \cdot 1,48)=10$ мл; $m(NaOH)_{p-p}=14,82$ г	
m(NaCl)=0,167 ·58,5=9,77 г	
Определена растворимость хлорида натрия при 0°C и показано, что осадок	10
при охлаждении раствора не образуется:	
$0,222=X/(100+X); X=28,53 \Gamma$	
Масса исходного раствора:	
$m_{p-pa} = m(NaOH)_{p-p} + m(HCl)_{p-p} = 47,17 + 14,82 = 61,99 = 62 \Gamma$	
$m(H_2O)=62-9,77=52,23\Gamma$	
В 100 воды растворяется 28,53 г	
В 52,23 – Х; Х=14,9г. 9,77 <14,9 – раствор ненасыщенный, осадок не	
выпадает	
Рассчитана масса раствора нитрата серебра, необходимого для осаждения	4
хлорида:	
n(NaCl)=n(AgNO ₃)=0,167 моль	
$m(AgNO_3)_{p-p}=0,167\cdot 170/0,12=236,6\Gamma$	
Итого:	20

Задача 3. (20 баллов)

Смесь кальция и алюминия массой 18,8 г прокалили без доступа воздуха с избытком графита. Продукты реакции обработали избытком разбавленной соляной кислоты, при этом выделилось 11,2 л газа (н.у.). Газ пропустили через 80 г 20%-ной бромной воды, при этом объем газа уменьшился до 8,96 л. Приведите необходимы уравнения реакций и определите:

- 1. Массовые доли металлов в исходной смеси.
- 2. Плотность смеси газов по азоту до и после ее пропускания через бромную воду.

Решение и критерии оценивания.

Решение	Баллы
Приведены правильные уравнения протекающих реакций:	5
$2C + Ca = CaC_2 (1)$	
$3C + 4A1 = A1_4C_3$ (2)	
$2HC1 + CaC_2 = C_2H_2 + CaCl_2$ (3)	
$12HC1 + Al_4C_3 = 3CH_4 + 4AlCl_3$ (4)	
$C_2H_2 + Br_2 = C_2H_2Br_2$ (5a) и $C_2H_2Br_2 + Br_2 = C_2H_2Br_4$ (5b)	
Проведен расчет количества кальция, алюминия и установлены их массовые	5
доли в смеси:	
n(газ.см)=11,2/22, 4=0,5 моль;	
пусть х моль в смеси ацетилена, тогда $n(CH_4)=(0,5-x)$ моль	
$n(Ca)=n(CaCl_2)=n(C_2H_2)$	
$n(A1)=4(0.5-x)/3; 27\cdot 4(0.5-x)/3 +40x=18.8; x=0.2 моль= n(Ca);$	

$m(Ca)=0,2\cdot 40=8\Gamma; m(A1)=18,8-8=10,8\Gamma;$	
w(Ca)=8/18,8=0,4255 или 42,55%; w(Al)=100-42,55=57,45%	
Определена плотность по азоту смеси метана с ацетиленом до пропускания	5
через бромную воду:	
Молярная масса газовой смеси:	
$M = (0.2 \cdot M(C_2H_2) + 0.3 \cdot M(CH_4))/0.5 = 20.6 $ г/моль	
$D_{N2}=20,6/28=0,74$	
Рассчитаны количество брома, вступившего в реакцию, состав газовой смеси	5
и ее плотность по азоту после реакции:	
$n(Br_2)=80\cdot 0.2/160=0.1$ моль — недостаток, взаимодействие протекает по	
реакции 5а.	
В газовую смесь после реакции входит 0, 1 моль ацетилена и 0,3 моль метана.	
$M = (0,1 \cdot M(C_2H_2) + 0,3 \cdot M(CH_4))/0,4 = 19,25$ г/моль	
D _{N2} =19,25/28=0,6875	
Итого баллов:	20

Задача 4 (20 баллов)

Органическое вещество, состоящее из углерода, водорода и кислорода, вступает в реакцию серебряного зеркала и не присоединяет галоген. Известно, что молекула этого вещества содержит 54 протона и 44 нейтрона.

- 1) Найдите молекулярную формулу.
- 2) Запишите структурную формулу вещества и напишите уравнение реакции серебряного зеркала с его участием.
- 3) Рассчитайте массу серебра, которая образуется при взаимодействии 14,7 грамм данного органического вещества.
- 4) Напишите уравнение реакции окисления данного органического вещества подкисленным раствором перманганата калия.

Решение и критерии оценивания:

Решение	Баллы
Атомы кислорода и углерода содержат равное число протонов и	
нейтронов, следовательно, превышение числа протонов над нейтронами	3 балла
должно быть отнесено на атомы водорода. Таким образом, молекула	
содержит 10 атомов водорода.	
Или для $C_x H_y O_z$	
6x + y + 8z = 54	
6x + 8z = 44 Откуда $y = 10$, т.е. число атомов водорода (H) = 10	
Для уравнения $6x + 8z = 44$ задаем $x = 1, 2$; рассчитываем у и выбираем	4 балла
разумные значения.	
Целые значения получаются для x=2 (y=4, не существует соединения	
$C_2H_{10}O_4$), а для x=6 получаем y=1, т.е. $C_6H_{10}O$	
Из предположения, что реакция серебряного зеркала получается с	
альдегидами, находим количество углерода и водорода в радикале.	3 балла
С учетом химических свойств заключаем, что это предельный альдегид	
R -CHO, где R = C_5H_{9} , т.е. циклопентил	
0	
	2 балла
Н структурная формула	

Задача 5 (20 баллов)

Осуществите превращения по схеме, напишите структурные формулы соединений $\mathbf{A} - \mathbf{I}$, уравнения реакций соответствующие превращениям. Учтите, что массовая доля углерода в соединении \mathbf{C} равна 85,7%, а массовая доля кислорода в соединении \mathbf{G} равна 38,6%, а также наряду с соединением \mathbf{F} образуется его изомер.

Решение:

Структурные	A - NaC = CH	
формулы	$B - CH_3 - CH_2 - C \equiv CH$	
	$C - CH_3 - CH_2 - CH = CH_2$	9 баллов
	D - $\mathrm{CH_3}$ - $\mathrm{CH_2}$ - $\mathrm{CH_2}$ - Br	(1 балл
	E - CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - CH_2 - CH_3	за
		каждую
	CH_3 $COOH$	формулу)
	$F - \bigcup_{H \to 0}^{CH_3} G - \bigcup_{H \to 0}^{COOH} H$	
Уравнения		
реакций		

1	$HC \equiv C - H + Na NH_{2} \rightarrow HC \equiv CNa + NH_{3}$	1 балл
	ацетиленид натрия	
2	$HC \equiv CNa + C_2H_5Cl \rightarrow HC \equiv C-C_2H_5 + NaCl$	1 балл
3	$HC \equiv C - C_2H_5 + H_2 \rightarrow H_2C = CH - C_2H_5$ (катализатор Pd/BaSO ₄)	1 балл
4	$H_2C=CH-C_2H_5+HBr \rightarrow H_2C(Br)-CH_2-CH_2-CH_3$ (в прис. H_2O_2)	1 балл
5	$2 \text{ H}_2\text{C(Br)-CH}_2 - \text{CH}_2 - \text{CH}_3 + 2\text{Na} \rightarrow \text{CH}_3 - (\text{CH}_2)_6 - \text{CH}_3 + 2\text{NaBr}$	1 балл
6	Сг ₃ О ₃ /Al ₂ О ₃ 450-500 °С СН ₃	1 балл
	C ₈ H ₁₈ -4 H ₂ + C ₂ H ₅	
7	H_3C $5H_3C$ + $12 \text{ KMnO}_4 + 18 \text{ H}_2\text{SO}_4 \xrightarrow{t^\circ}$	2 балла
	$+6K_2SO_4 + 12MnSO_4 + 28H_2O$	
8	O O O O O O O O O O	2 балла
	Зассчитывать реакцию, где образуется $+ H_2O$, а оксид фосфора в условиях	
9	Реакция идет при нагревании фталевого ангидрида с аммиаком:	1 балл
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	фталевый ангидрид фталимид	
		Итого 20 баллов