Задача 9-1

Озон используют для обеззараживания питьевой воды. Озонированная вода лучше и вкуснее хлорированной, которую до сих пор приходится пить жителям многих городов. Озон получают при «тихом» (без искр) электрическом разряде в стеклянной трубке, через которую пропускают кислород. Такой прибор называют озонатором. Выходящий из озонатора газ содержит около 10% (мас.) озона.

- 1. Рассчитайте объем (дм 3 , н.у.) и массу (г) озона образовавшегося на выходе из озонатора, если через озонатор пропустили кислород объемом 56 дм 3 (н.у.)
 - 2. Напишите уравнение реакции лежащей в основе данного процесса
- 3. Какое число молекул озона и атомов кислорода содержится в таком количестве озона?
 - 4. Объясните сущность обеззараживающего действия озона.

Задача 9-2

Чтобы выпечка получалось пышной, необходимо добавить в тесто питьевую соду погашенную уксусной кислотой. При этом происходит химическая реакция и интенсивно выделяется газ

- 1. Какой газ придает пирогам пышность?
- 2. Составьте уравнение протекающей реакции
- 3. Найдите объем выделившегося газа (н.у.), если к 10 г питьевой соды добавили 20 мл 3%-го раствора уксусной кислоты с плотностью 1,006 г/мл
 - 4. Определите тип протекающей реакции

Задача 9-3

Известно, что в четырех колбах находятся растворы азотной кислоты, карбоната калия, нитрата серебра и хлорида бария. Как, не используя других реагентов, определить содержание каждой колбы? Составьте план эксперимента и напишите уравнения реакций в молекулярном и ионном виде.

Задача 9-4

Расшифруйте реакции, уравнения которых приведены на схеме (в схеме не указаны стехиометрические коэффициенты)

$$KCl_{(p-p)} + H_2O_{(\texttt{w})} + CO_{2(r)} \xrightarrow{D_{(\texttt{tb.})}} C_{(p-p)} \xrightarrow{C_{(p-p)}} KCl_{(p-p)} + H_2O_{(\texttt{w})} + B_{(r)} \xrightarrow{KCl_{(p-p)} + F_{(r)}} G_{(p-p)} + H_{(\texttt{tb.})}$$

- 1. Определите вещества А-Н, запишите их формулы и названия.
- 2. Запишите уравнения реакций.

Задача 9-5

Масса молекулы вещества состава N_xO_y равна $1,528*10^{-22}$ г, в его составе массовая доля азота 30,43%. Установите молекулярную формулу вещества. Рассчитайте относительную плотность данного вещества по воздуху. Напишите все возможные названия полученного соединения

Решение задачи 9-1

1. Находим исходную массу кислорода

$$n(O_2)=V(O_2)/Vm=56/22,4=2,5$$
 (моль)

$$m(O_2)=n(O_2)*M(O_2)=2.5*32=80 (\Gamma)$$

2. Находим массу озона

$$m(O_3)=m(O_2)*0,1=80*0,1=8(\Gamma)$$

3. Находим объем озона

$$n(O_3)=m(O_3)/M(O_3)=8/48=0,167$$
 (моль)

$$V(O_3)=n(O_2)*Vm=0,167*22,4=3,74 (дм^3)$$

- 4. Уравнение реакции: $3O_2 = 2O_3$
- 5. Находим число молекул озона в полученном объеме

$$N(O_3) = n(O_2)*N_a = 0.167*6.02*10^{23}=1*10^{23}$$

6. Находим число атомов кислорода в полученном объеме

$$N(O)_{\text{в молекулах озона}} = 3*N(O_3) = 3*1*10^{23} = 3*10^{23}$$

Озон является аллотропной модификацией кислорода. Озон гораздо менее устойчивая модификация чем кислород, и распадается на атомарный кислород и радикалы. Обеззараживающее действие озона основано на разрыве атомарным кислородом органических соединений при взаимодействии с ними. В реакциях разрушения органических соединений участвуют и свободные радикалы, образующиеся при разложении озона в воде.

Критерии оценивания	Баллы
1. Написано уравнение реакции.	1
2. Рассчитана исходная масса кислорода	1
3. Рассчитана масса озона	1
4. Рассчитан объем озона	1
5. Находим число молекул озона в полученном объеме	2
6. Находим число атомов кислорода в полученном объеме	2
7. Объяснена сущность	2
обеззараживающего действия озона	(1 балл за атомарный кислород и 1 балл за радикалы)

Итого:	10
Возможны другие способы решения	

Решение задачи 9-2

 $NaHCO_3 + CH_3COOH = CH_3COONa + CO_2 + H_2O$

Тип реакции – реакция обмена

1. Находим массу раствора уксусной кислоты

$$m_{(p-pa)} = V_{(p-pa)} * \rho_{(p-pa)} = 20*1,006 = 20,12 (\Gamma)$$

2. Находим количество уксусной кислоты

$$m(CH_3COOH) = m_{(p\text{-}pa)} *W(CH_3COOH) = 20,12*0,03=0,60 (\Gamma)$$

 $n(CH_3COOH) = m(CH_3COOH)/M(CH_3COOH) = 0,60/60 = 0,01$ (моль)

3. Находим количество пищевой соды n(NaHCO₃)= m(NaHCO₃)/M(NaHCO₃)=10/84=0,119 (моль)

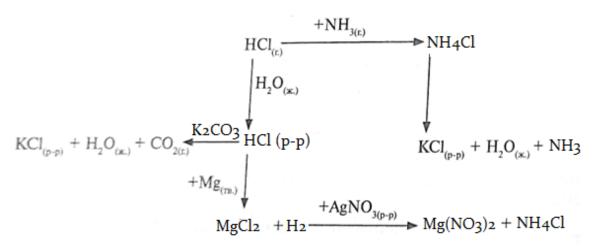
4. Находим количество углекислого газа

По УХР $n(CH_3COOH)$: $n(NaHCO_3)=1:1$ следовательно пищевая сода дана в избытке, находим $n(CO_2)$ по уксусной кислоте

По УХР
$$n(CO_2) = n(CH_3COOH) = 0,01$$
 моль

5. Находим объем углекислого газа $V(CO_2)=n(CO_2)*V_m=0.01*22.4=0.224$ (д)

Критерии оценивания	Баллы
1. Написано уравнение реакции	1
2. Указан тип реакции	1
3. Рассчитана масса раствора уксусной кислоты	1
4. Рассчитано количество уксусной кислоты	2
5. Рассчитано количество пищевой соды	1
6. Указано, что пищевая сода дана в избытке	1
7. Рассчитано количество углекислого газа	1
8. Рассчитан объем углекислого газа	2
Итого:	10
Возможны другие способы решения	


Решение задачи 9-3

Вещество	HNO_3	K_2CO_3	$AgNO_3$	BaCl ₂
HNO ₃		\uparrow CO ₂	-	-
K ₂ CO ₃	\uparrow CO ₂		√белый	↓ белый крист
AgNO ₃	-	√белый		↓белый творожистый

RaCl _a	-	↓ белый крист	√белый	
DaC12		творожистый		

Критерии оценивания	Баллы
1) Написаны уравнения реакций в	1*4= 4
молекулярном виде	
2) Написаны уравнения реакций в ионном виде	1*4 = 4
3) Расписан план эксперимента	2
Итого	10 баллов
Возможны другие способы решения	

Решение задачи 9-4

А – хлорид аммония

В – аммиак

С – соляная (хлороводородная) кислота

D – карбонат калия (возможен гидрокарбонат калия)

Е – хлорид магния

F-водород

G – нитрат магния

Н – хлорид аммония

 $HCl + NH_3 = NH_4Cl$

 $NH_4Cl + KOH = KCl + H_2O + NH_3$

 $HCl + H_2O = H_3O^+ + Cl^-$

$$\begin{split} 2HCl_{(p-p)} + Mg &= MgCl_2 + H_2 \\ MgCl_2 + 2AgNO_3 &= 2AgCl + Mg(NO_3)_2 \\ 2HCl_{(p-p)} + K_2CO_3 &= 2KCl + CO_2 + H_2O \end{split}$$

Критерии оценивания	Баллы
1. Определены правильно вещества	0,5*8=4
A, B, C, D, E, F, G, H	(по 0,5 баллу за каждое правильное
	определение)
2. Написаны названия веществ А, В,	0,5*8=4
C, D, E, F, G, H	0,5 6— 1
3. Написаны уравнения реакций	1,5*6=3
Итого:	11
Возможны другие способы решения	

Решение задачи 9-5

1. Находим молярную массу вещества

 $M(в-ва)=m(молекулы)*N_a=1,528*10^{-22}*6,02*10^{23}=92(г/моль)$

2. Находим массовую долю кислорода

W(O)=100-30,43=69,57%

3. Находим простейшую формулу вещества

 $x:y=W(N)/A_r(N):W(O)/A_r(O)=30,43/14:69,57/16=2,17:4,35=1:2$

NO₂ – простейшая формула вещества

3. Устанавливаем истинную формулу вещества

 $M(вещества)/M(NO_2)=92/46=2$

Следовательно, истинная формула – N_2O_4

4. Рассчитываем относительную плотность вещества по воздуху

 $D_{\text{воздух}} = M(N_2O_4)/M(\text{воздуха}) = 92/29 = 3,17$

 N_2O_4 – тетраоксиддиазота, азотный тетраоксид

Критерии оценивания	Баллы
1. Рассчитана молярная масса	2
вещества	2
2. Найдена массовая доля кислорода	0,5
3. Установлена простейшая формула	2,5
вещества	2,3
4. Установлена истинная формула	1
вещества	1
5. Рассчитанаотносительная	1
плотность газа по воздуху	1
Перечислены названия N_2O_4	1*2=2
	За название оксид азота (IV) дается
	0,5 балла
Итого:	9
Возможны другие способы решения	