Критерии и методика оценивания выполненных олимпиадных заданийВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО ХИМИИ РЕГИОНАЛЬНАЯ ПРЕДМЕТНО-МЕТОДИЧЕСКАЯ КОМИССИЯ

КРИТЕРИИ И МЕТОДИКА ОЦЕНИВАНИЯ ВЫПОЛНЕННЫХ ОЛИМПИАДНЫХ ЗАДАНИЙ

возрастной группы (9 класс) муниципального этапа всероссийской олимпиады школьников по химии

ТЕОРЕТИЧЕСКОГО ТУРА

2023-2024 учебный год

По теоретическому туру максимальная оценка результатов участника возрастной группы (9 классы) определяется арифметической суммой всех баллов, полученных за выполнение заданий и не должна превышать 50 баллов.

ЗАДАНИЕ 9.1. (Источник – ВОШХ, г. Москва, школьный этап, 2018 год)

Три кислоты разной основности, одна слабая и две сильные, состоят только из неметаллов и обладают двумя общими свойствами: молекула каждой из них содержит одинаковое число атомов кислорода и одно и то же число электронов – 50. Установите формулы этих кислот, назовите их и напишите их структурные формулы. Какая из этих кислот слабая?

РЕШЕНИЕ:

Обозначим общую формулу кислот НхЭОу.

Из условия на число электронов составляем уравнение:

x + Z(3) + 8y = 50, где Z(3) - порядковый номер элемента 3.

Уравнение решается подбором, причём подбор облегчается тем, что сильные кислородсодержащие кислоты содержат не меньше 3 атомов кислорода.

При y = 3 получаются неустойчивые кислоты d-металлов, а значению y = 4 соответствуют три кислоты: $HClO_4$ (хлорная), H_2SO_4 (серная) и H_3PO_4 (фосфорная).

Структурные формулы кислот:

Фосфорная кислота самая слабая.

ОЦЕНИВАНИЕ:

No	Содержание критерия	Баллы
1	3 формулы	3
2	3 названия	3
3	3 структуры	3
4	Слабая кислота	1
ИТОГО		10

ЗАДАНИЕ 9.2. (Источник – Н.Е. Кузьменко Начала химии)

При стандартных условиях теплота полного сгорания белого фосфора 760,1 кДж/моль, а теплота полного сгорания черного фосфора 722,1 кДж/моль. Запишите термохимические уравнения реакций сгорания черного фосфора и белого фосфора. Чему равна теплота превращения черного фосфора в белый при стандартных условиях?

РЕШЕНИЕ:

Термохимическое уравнение реакции горения 1 моль черного фосфора

 $P(y) + 5/4 O_2 = 1/2 P_2 O_5 + 722,1 кДж/моль$

Этот же процесс можно провести в две стадии: сначала превратить черный фосфор в белый:

 $P(y) = P(\delta) + Q$ а затем белый фосфор сжечь:

 $P(6) + 5/4 O_2 = 1/2 P_2 O_5 + 760,1 кДж/моль$

По закону Гесса 722,1 = Q + 760,1 Откуда Q = -38 кДж/моль.

ОЦЕНИВАНИЕ:

№	Содержание критерия	Баллы
1	Термохимические уравнения реакций горения 2х2	4
2	Термохимическое уравнение перехода черного фосфора в белый (в общем	2
	виде)	
3	Расчет теплоты превращения черного фосфора в белый при стандартных	4
	условиях по закону Гесса	
ИТОГО		10

ЗАДАНИЕ 9.3. (Источник – ЕГЭ 2023)

Через 240г 20% раствора сульфата меди пропустили сероводород. При этом массовая доля сульфата меди в растворе уменьшалась до 2,15%. К полученному раствору добавили 128г 25% раствора гидроксида натрия. Определите массовую долю гидроксида натрия в образовавшемся растворе.

РЕШЕНИЕ:

 $CuSO_4 + H_2S = CuS + H_2SO_4(1)$

 $2NaOH + H_2SO_4 = Na_2SO_4 + 2H_2O$ (2)

 $2NaOH + CuSO_4 = Cu(OH)_2 + Na_2SO_4$ (3)

Пусть $n(CuSO_4)$, которое вступило в реакцию (1) - х моль

Тогда, 0.0215 = 48 - 160x/(240 + 34x - 96x)

$$x = 0.27$$
 моль

Масса раствора после (1) реакции $m_{p-pa} = 223,26\Gamma$

 $n(H_2SO_4) = 0.27$ моль

 $n(CuSO_4)_{oct.} = 0.03$ моль

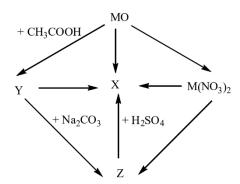
 $n_{\text{исх}}(NaOH) = 0.8$ моль

n(NaOH) = 0.26 моль – оставшиеся после реакции (2)

n(NaOH) = 0.2 моль – оставшиеся после реакции (3)

 $m(NaOH) = 8\Gamma$

 $m_{\text{KOH.ppe}} = 223,26 + 128 - 2,94 = 348,32 \,\Gamma$


 $w_{NaOH} = 8/348,32 = 0,023$ или 2,3%

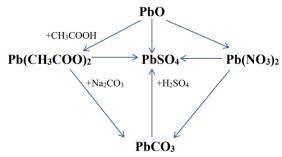
ОЦЕНИВАНИЕ:

№	Содержание критерия	Баллы
1	Уравнения реакций 3х1	3
2	Определение $n_{\text{исx}}(\text{Cu}(\text{SO}_4))$	1
3	Определение n _{исх} (NaOH)	1
4	Определение n(Cu(SO ₄)), вступившего в (1) реакцию	2
5	Определение массы и кол-ва вещества, гидроксида натрия, оставшегося в р-ре	1
6	Определение массы, конечного раствора	1
7	Расчет массовой доли гидроксида натрия в конечном растворе	1
ИТОГО		10

ЗАДАНИЕ 9.4. (Источник – ВОШХ, муниципальный этап, г. Москва 2017 год)

Расшифруйте схему превращений, определите неизвестный элемент M и напишите уравнения всех реакций, если известно, что действие цинка на водный раствор, содержащий 9,75 г Y, позволяет получить 6,21 г твёрдого простого вещества M. Напишите уравнения всех указанных реакций.

РЕШЕНИЕ:


Из схемы можно сделать вывод, что Y — ацетат двухвалентного металла M. В ряду напряжений M расположен правее цинка, поэтому происходит реакция

$$M(CH_3COO)_2 + Zn = M + Zn(CH_3COO)_2.$$

$$n(ацетата) = n(M)$$

9,75/(M + 118) = 6,21/M

M = 207, это – свинец.

Расшифруем схему превращений:

Уравнения реакций:

$$PbO + 2CH_3COOH = Pb(CH_3COO)_2 + H_2O$$

$$Pb(CH_3COO)_2 + Na_2CO_3 = PbCO_3 \downarrow + 2CH_3COONa$$

(правильно: $2Pb(CH_3COO)_2 + 2Na_2CO_3 + H_2O = Pb_2(OH)_2CO_3 \downarrow + 4CH_3COONa + CO_2 \uparrow$, однако средний карбонат также засчитывается)

$$PbCO_3 + H_2SO_4 = PbSO_4 \downarrow + H_2O + CO_2$$

$$PbO + SO_3 = PbSO_4$$
 (или $PbO + H_2SO_4 = PbSO_4 \downarrow + H_2O$)

$$PbO + 2HNO_3 = Pb(NO_3)_2 + H_2O$$

$$Pb(NO_3)_2 + Na_2CO_3 = PbCO_3 \downarrow + 2NaNO_3$$

(правильно:
$$2Pb(NO_3)_2 + 2Na_2CO_3 + H_2O = Pb_2(OH)_2CO_3 \downarrow + 4NaNO_3 + CO_2 \uparrow$$
,

однако средний карбонат также засчитывается)

$$Pb(NO_3)_2 + H_2SO_4 = PbSO_4 \downarrow + 2HNO_3$$

$$Pb(CH_3COO)_2 + Na_2SO_4 = PbSO_4 \downarrow + 2CH_3COONa$$

ОЦЕНИВАНИЕ:

№	Содержание	Баллы
1	Определение вещества М	2
2	Уравнения реакций 8х1	8
ИТОГО		10

ЗАДАНИЕ 9.5. (Источник – Олимпиада «Ломоносов», 2017 год)

Предложите способ разделения смеси железных и медных опилок и выделения этих металлов в индивидуальном виде при помощи химических реакций (минимум 3 реакции). Напишите уравнения протекающих процессов.

РЕШЕНИЕ:

При обработке смеси соляной кислотой растворяется только железо:

Fe + 2HCl
$$\rightarrow$$
 FeCl₂ + H₂ \uparrow

А медь остается в виде простого вещества. Выделить железо из раствора хлорида железа (II) можно, например, так:

$$\begin{split} FeCl_2 + 2KOH &\rightarrow Fe(OH)_2 \downarrow + 2KCl \\ t \\ Fe(OH)_2 &\rightarrow FeO + H_2O \uparrow \\ t \\ FeO + CO &\rightarrow FeO + CO_2 \end{split}$$

Оценивание

№	Содержание	Баллы
1	Уравнения реакций 4х2	6
2	Предложение по растворению железа в разбавленной кислоте	2
3	Предложение по выделению железа из раствора	2
ИТОГО		10