ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО ХИМИИ МУНИЦИПАЛЬНЫЙ ЭТАП 2024-2025 УЧЕБНЫЙ ГОД 8 КЛАСС

ОТВЕТЫ И КРИТЕРИИ ОЦЕНИВАНИЯ

Задание 1. Соотнесите символ химического элемента с происхождением его названия -

символ	Про	Происхождение названия химического элемента				
химического						
элемента						
0	1	В честь древнегреческого бога солнца				
N	2	От древне-греческого ῥόδον — «роза»				
K	3	Рождающий воду				
Ra	4	В честь сыновей богини Геи				
Pm	5	Рождающий кислоту				
Ti	6	От древне-греческого ίρις — «радуга»				
Cr	7	От латинского — «луч».				
Rh	8	Скандинавский бог войны				
Ir	9	В честь героя, похитившего у богов огонь и передавший людям				
Н	10	Зола, прокаленка				
Ga	11	В честь римской богини земли Теллус				
Te	12	От древне-греческого ἄζωτος — «безжизненный».				
Th	13	От древне-греческого χρῶμα — цвет.				
Не	14	В честь Франции				

Таблица с ответами:

О	N	Ra	Pm	Ti	K	Cr	Rh	Ir	Н	Ga	Te	Th	Не
5	12	7	9	4	10	13	2	6	3	14	11	8	1

Критерии оценивания: за каждое правильное совпадение-1 балл.

ИТОГО-14 баллов

Задание 2. Внимательно прочитайте предложения:

Предложения	Химический
	элемент/
	вещество
Хлор чрезвычайно токсичен, поэтому при работе с ним следует	О
соблюдать меры безопасности.	
Фтор входит в состав эмали зубов.	a
Водород имеет три изотопа.	3
Цинк легко плавится.	c
Валентность серы в соединениях равна II, IV и VI.	П
Примерно 99% кальция в организме человека содержится в костной и	c
зубной ткани.	
В лаборатории натрий хранят под слоем керосина.	ф
В состав ядра атома неона входят десять протонов.	у
Оксид хрома (III) – вещество зеленого цвета.	p

В газообразном состоянии иод образует пары фиолетового цвета.	ф
Соли, содержащие кремний, входят в состав силикатного клея	T
Серебро со временем темнеет на воздухе.	0

Критерии оценивания:

<u>rrbur</u>	ерии оценивания.	
1	Определите, в каких предложениях говориться о химическом элементе, а в каких —о веществе. Выберите буквы, соответствующие предложениям, в которых говорится о веществе Ответ: ОСФРФО	3 балла (0,5 балла за каждую букву)
2	Из выбранных букв составьте название химического элемента. Ответ: ФОСФОР	1 балл- за составленное слово.
3	Из первых букв русских названий химических элементов В, Ra, Ag, Ne, Db составьте фамилию немецкого алхимика, открывшего данный элемент. Он из биологической жидкости получил светящиеся пары белого вещества, которое ярко горело и светилось в темноте, поэтому в переводе с греческого название элемента означает «светоносный». Ответ: Брандт	1 балл- за составленное слово.
4	Напишите уравнение химической реакции горения данного вещества в избытке кислорода. Составьте структурную формулу продукта горения $ \textbf{Ответ: } 4P + 5O_2 = 2P_2O_5 \text{ (или } P_4 + 5O_2 = P_4O_{10} \text{)} $	2 балла- за составленное уравнение (1-с ошибкой в коэффициентах), 2 балла-за структурную формулу
5	Уточненная физиологическая потребность данного химического элемента для взрослых составляет 800 мг в сутки. Рассчитайте, сколько грамм горбуши надо употребить взрослому, чтобы обеспечить суточную потребность человека в данном химическом элементе, если в 100г продукта содержится 200 мг данного химического элемента. Ответ: m горбуши = 100*800/200=400г	2 балла
	Итого:	11 баллов

Задание 3. Неизвестная соль содержит 20 % атомных долей щелочного металла, 20 % атомных долей азота и 60 % атомных долей кислорода. Массовая доля щелочного металла в соли равна 38,61%.

- 1. Определите формулу соли, имеющую название индийская селитра.
- 2. Индийская селитра является универсальным удобрением для плодовых и овощных культур, цветов и газона. Она повышает устойчивость растений к неблагоприятным условиям среды, улучшает качество и вкус плодов. Для подкормки овощных культур, ягодных кустов и фруктовых деревьев используют растворы разной концентрации. Садовник Иван Иванович приготовил 0,15% раствор селитры для подкормки овощных культур. После обработки грядок у него осталось 15 литров раствора. Рассчитайте сколько граммов соли надо добавить к оставшемуся 0,15% раствору для приготовления 0,30 % раствора (примите плотность 0,15% раствора при 20°C 1,0 г/мл)
- 3. При подкормках цветочных культур в почву вносят 10 г данного металла на 1 m^2 . Вычислите массу (в килограммах) селитры, которую надо внести в почву на участке площалью 100 m^2 .

Ответы и критерии оценивания

1	Ме:N:О= 20:20:60=1:1:3 Следовательно, формула имеет вид	1 балл
	MeNO3	
	ω (Me) = $\frac{Ar(Me)}{Mr_{B-Ba}}$; 0,3861 = $\frac{Ar(Me)}{Ar(Me)+14+48}$; $Ar(Me) = 39 -$ калий	1 балл
	MeNO3 - KNO3	
2	Так как плотность равна 1,0 г/мл, то т (исх. p-pa)=15 кг	1 балл
	m соли в исх. p-pe = $15*0,0015=0,0225$ кг	
	$0.003 = \frac{0.0225 + m'}{m' + 15}$; m' сол $u = 0.02256$ кг $= 22.56$ г	2 балла
	10 1 2	2.5
3	10 г-1м ²	2 балла
	$X \Gamma - 100 \text{ м}^2 X=10*100/1=1000 \Gamma = 1 \text{ кг масса металла}$	
	m селитры = 1/0,3861=2,59 кг	
	итого	7 баллов

Задача 4. Знайка из Солнечного города, изучая химическую энциклопедию, выписал 10 различных уравнений реакций, но проходивший рядом Тюбик уронил свою палитру, и краски испачкали все записи. Помогите Знайке! Восстановите записи, вставив пропущенные вещества и коэффициенты, а также укажите тип каждой химической реакции.

Ответы

- 1. Na₂O + 2HNO₃ → 2NaNO₃ + H₂O- реакция обмена
- 2. $2Al + 3CI_2 \rightarrow 2AlCl_3$ реакция соединения
- 3. 2 $Fe(OH)_3 \rightarrow Fe_2O_3 + 3H_2O$ реакция разложения
- 4. $3Mg + N_2 \rightarrow Mg_3N_2$ реакция соединения
- 5. 2CO + $O_2 \rightarrow$ 2CO2– реакция соединения
- 6. $Cu(NO_3)_2 + 2NaOH \rightarrow Cu(OH)_2 + 2NaNO_3$ реакция обмена
- 7. $2SeO_2 + O_2 = 2SeO_3$ реакция соединения
- 8. $Cr_2O_3 + 2Al \rightarrow 2 Cr + Al_2O_3$ реакция замещения

9.
$$FeCl_3 + 3AgNO_3 \rightarrow 3 \ AgCl + Fe(NO_3)_3$$
– реакция обмена
10. $2P + 5Cl_2 \rightarrow \ 2PCl_5$ — реакция соединения

Критерии оценивания:

за каждое уравнение -2 балла (с ошибкой в коэффициентах-1 балл)+ 0,5 балла за указание типа реакции. ИТОГО -25 баллов

Задача 5

Некоторую порцию твердого гидроксида калия растворили в 300 мл воды. Раствор разделили на две неравные части. К первой части прилили избыток раствора сульфата магния. При этом выпал осадок, масса которого составила 2,97г. К другой части прилили раствор, содержащий 2,94 г ортофосфорной кислоты.

Задание:

- 1) Составьте уравнения происходящих реакций;
- 2) Определите массу гидроксида калия в первой и во второй части, при условии, что все вещества в обеих реакциях прореагировали полностью;
- 3) Рассчитайте массовую долю гидроксида калия в исходном растворе. Ответ округлите до десятых.

десятых.	
РЕШЕНИЕ	баллы
Уравнения реакции:	за каждое по 1
2 КОН + MgSO ₄ \rightarrow Mg(OH) ₂ \downarrow + K ₂ SO ₄ (в первой порции, уравнение 1);	баллу - 2
3 КОН + H_3 PO ₄ \rightarrow K_3 PO ₄ + 3 H ₂ O (во второй порции, уравнение 2);	балла
2. Определение массы гидроксида магния и гидроксида калия в первой	за каждое по 1
порции	баллу - 2
$n(Mg(OH)_2 = m / M = 2,97/58 = 0,05 $ моль	балла
По уравнению реакции:	
$n(KOH) = 2n (MgSO_4), n(KOH) = 0,1$ моль	
$m_1(KOH) = 0.1 \cdot 56 \ \Gamma/моль = 5.6 \ \Gamma$	
3. Определение массы гидроксида калия во второй порции (m ₂ (KOH)) -	3 балла
$n(H_3PO_4)=m:M=2,94\Gamma:98$ г/моль = $0,03$ моль	
По уравнению реакции:	
$n(KOH) = 3n(H_3PO_4) = 0.9$ моль	
$m2(KOH) = 0.9 \cdot 56 \ \Gamma/MOЛЬ = 5.04 \ \Gamma$	
4. Для расчета массовой доли гидроксида калия в исходном растворе по	Расчет массы
формуле:	щелочи и
$\omega = \frac{m \text{ вещества}}{m \text{ раствора}} *100\%$	раствора
- рассчитаем общую массу растворенного гидроксида калия	-1 балл,
$m_3(KOH) = m_1(KOH) + m_2(KOH) = 5.6 + 5.04 = 10.64 \Gamma$	расчет
- рассчитаем массу раствора:	массовой
m(pаствора) = m(KOH) + m(H2O) = 10,64 + 300 = 310,64 г.	доли -1,
$\omega \text{ (KOH)} = \frac{m \text{ (KOH)}}{m \text{ pactBopa}} *100\%$	итого 2 балла
ω (KOH)= 10,64/310,64*100=3,4 %	
итого	9 баллов