РЕШЕНИЯ ОЛИМПИАДНЫХ ЗАДАНИЙ МУНИЦИПАЛЬНОГО ЭТАПА ВСЕРОССИЙКОЙ ОЛИМПИАДЫ ШКОЛЬНИКОВ ПО ХИМИИ ДЛЯ УЧАСТНИКОВ 8 класса

2024-2025 уч.год

Решение задачи 8.1:

1. Определяем количество вещества для X_2 О и Y_2S_3 :

n (
$$X_2$$
O) = N / N_A = 2,709*10²² / 6,02*10²³ = 0,045 моль n (Y_2 S₃) = V / V_m = 0,336 / 22,4 = 0,015 моль

2. Рассчитываем молярные массы веществ:

$$M(X_2O) = m / n = 6,43 / 0,045 = 142,89 г/моль$$

$$M(Y_2S_3) = m / n = 7,712 / 0,015 = 514,13 г/моль$$

3. Рассчитываем молярную массу X и Y:

$$M(X) = M(X_2O) - M(O) = 142,89 - 15,999 = 126,9 г/моль $\Rightarrow X = Cu$$$

$$M(Y) = M(Y_2S_3) - 3M(S) = 514.13 - 96.192 = 417.94$$
 г/моль \Rightarrow $Y = Bi$

Оценивание:

Расчет количества вещества X_2 О	4 балла
Расчет количества вещества Y_2S_3	4 балла
Расчет молярной массы X_2 О	4 балла
Расчет молярной массы Y_2S_3	4 балла
Определение X и Y (по 2 балла)	4 балла
Итого	20 баллов

Решение задачи 8.2.

- 1. Частица не может быть нейтральной молекулой, т.к. число электронов больше числа протонов. Значит это отрицательно заряженный ион с зарядом -3.
 - 2. Предположим, что частица состоит из одинаковых атомов:

$$p(3) = 37 : 4 = 9,25$$
 \Rightarrow дробное число протонов невозможно

Предположим самый простой вариант – кислотный остаток кислород содержащей кислоты, значит состав частицы $3O_3^{3-}$.

Найдем Э в составе кислотного остатка:

$$p(\Im) = 37 - 3.8 = 37 - 24 = 13$$
 \Rightarrow Al \Rightarrow AlO₃³⁻

Рассмотрим и другие варианты, если в составе не кислород.

Предположим состав частицы $9F_3^{3-}$.

$$p(\Im) = 37 - 3.9 = 37 - 27 = 10$$
 \Rightarrow Ne (не образует соединений)

Предположим состав частицы $3N_3^{3-}$.

$$p(\Im) = 37 - 3.7 = 37 - 21 = 16$$
 \Rightarrow S \Rightarrow SN₃³ (не существует)

Предположим состав частицы $9C_3^{3-}$.

$$p(3) = 37 - 3.6 = 37 - 18 = 19$$
 \Rightarrow K \Rightarrow KC₃³⁻ (не существует)

- 3. Соединения, в состав которых входит AlO_3^{3-} : H_3AlO_3 , K_3AlO_3 (или любая другая соль)
 - 4. Классы соединений: кислоты и соли.

Если найдено другое решение данной задачи, полностью удовлетворяющее условию задачи, оно оценивается максимальным количеством баллов.

Оценивание:

Определение заряда иона	4 балла
Расчет состава частицы	8 баллов
Запись соединений (по 2 балла)	4 балла
Определение класса соединений (по 2 балла)	4 балла
Итого	20 баллов

Решение задачи 8.3

Анализ схемы превращений: 3-я реакция нейтрализации, значит Б — кислота (т.к. углерод неметалл). В результате всех превращений должен получиться Са, значит эта реакция нейтрализации протекает с гидроксидом кальция. Для получения металла реакций замещения используют либо ответствующие оксиды, либо хлориды, а вещество E получается реакцией нейтрализации, поэтому E — хлорид кальция. Получаем:

1. Реакция соединения:

$$C + O_2 = CO_2$$
 (вещество A)

2. Реакция соединения:

$$CO_2 + H_2O = H_2CO_3$$
 (вещество **Б**)

3. Реакция нейтрализации:

$$H_2CO_3 + Ca(OH)_2 = CaCO_3$$
 (вещество **B**) + $2H_2O$

4. Реакция разложения:

$$CaCO_3 \xrightarrow{t^0} CaO (вещество \Gamma) + CO_2$$

5. Реакция соединения:

$$CaO + H_2O = Ca(OH)_2$$
 (вещество Д)

6. Реакция нейтрализации:

$$Ca(OH)_2 + 2HCl = CaCl_2$$
 (вещество E) + $2H_2O$

7. Реакция замещения:

$$3CaCl_2 + 2Al \xrightarrow{r^0} 3Ca + 2AlCl_3$$
 (либо с H_2 , либо с Mg)

Оценивание:

Запись уравнений реакций (по 2 балла)	14 баллов
Определение веществ А, Б, В, Г, Д, Е (по 1 баллу)	6 баллов
Итого	20 баллов

Решение задачи 8.4:

- 1) Веществом X мог быть оксид, гидроксид металла, основная соль или оксихлорид.
- 2) Если реакции не протекала, то исходным веществом был кристаллогидрат хлорида двухвалентного металла, т.е. произошло его обезвоживание.

Рассмотрим все возможные варианты:

1) Если исходное вещество X – оксид

$$3,285 \ \Gamma$$
 $1,538 \ \Gamma$ $1,747 \ \Gamma$ $MeO + 2HCl = MeCl_2 + H_2O$ $A_r(X) + 16$ $A_r(X) + 71$ 18

$$n \text{ (MeO)} = n(H_2O)$$

$$\frac{3,285}{A_r(X) + 16} = \frac{1,747}{18}$$

$$1,747 \cdot A_r(X) = 31,178$$

 \Rightarrow такого химического элемента нет

$$A_r(X) = 17.8$$

2) Если исходное вещество X – гидроксид

$$3,285 \Gamma$$
 $1,538 \Gamma$ $1,747 \Gamma$ $Me(OH)_2 + 2HCl = MeCl_2 + 2H_2O$ $A_r(X) + 34$ $A_r(X) + 71$ $18 \cdot 2$

$$\frac{3,285}{A_r(X) + 34} = \frac{1,747}{18 \cdot 2}$$

$$1,747 \cdot A_r(X) = 58,862$$

⇒ такого химического элемента нет

$$A_r(X) = 33,69$$

3) Если исходное вещество X – основная соль

$$3,285 \, \Gamma$$
 $1,747 \, \Gamma$ MeOHCl + HCl = MeCl₂ + H₂O $A_r(X) + 52,5$ $A_r(X) + 71$ 18 $\frac{3,285}{A_r(X) + 52,5} = \frac{1,747}{18}$ \Rightarrow решения нет $1,747 \cdot A_r(X) = -32,59$

4) Если исходное вещество X – оксихлорид

$$3,285 \Gamma$$
 $1,538 \Gamma$ $1,747 \Gamma$ $Me_2OCl_2 + 2HCl = 2MeCl_2 + H_2O$ $2 \cdot A_r(X) + 87$ $2 \cdot (A_r(X) + 71)$ 18

$$\frac{3,285}{2\cdot A_r(X)+87}=\frac{1,747}{18} \\ 3,494\cdot A_r(X)=-92,859 \Rightarrow$$
 решения нет

5) Если исходное вещество X – кристаллогидрат

$$3,285 \Gamma$$
 $1,538 \Gamma$ $1,747 \Gamma$ $MeCl_2 \cdot n H_2O \xrightarrow{t^0} MeCl_2 + nH_2O$ $A_r(X) + 71 + 18 \cdot n$ $A_r(X) + 71$ $18 \cdot n$

$$\frac{3,285}{A_r(X) + 71 + 18 \cdot n} = \frac{1,747}{18 \cdot n}$$
$$A_r(X) = 15,85 \cdot n - 71$$

При
$$n = 1, 2, 3$$
 и 4 \Rightarrow решения нет

При
$$n=5$$
 $\Rightarrow A_r(X)=8,25$ - такого элемента нет

При
$$n = 6$$
 $\Rightarrow A_r(X) = 24,1$ - химический элемент Mg

Решением данной задачи является MgCl₂·6H₂O

Оценивание:

Предположение классов веществ в реакции с НС1	2 балла
Предположение процесса обезвоживания кристаллогидрата	2 балла
Подтверждение расчетом, что вещество X не является оксидом,	12 баллов
гидроксидом, оксихлоридом или основной солью	
Подтверждение расчетом, что вещество X кристаллогидрат	4 балла
Итого	20 баллов

Решение задачи 8.5:

1. «Красный порошок» - это красный фосфор, простое вещество, неметалл.

2.
$$4P + 5O_2 = P_4O_{10}$$
 или $2P + 5O_2 = P_2O_5$

 P_2O_5/P_4O_{10} – оксид фосфора (V)

$$P_4O_{10} + 6 H_2O = 4 H_3PO_4$$
 или $P_2O_5 + 3 H_2O = 2 H_3PO_4$

$$P_2O_5 + 3 H_2O = 2 H_3PO_4$$

 H_3PO_4 — ортофосфорная кислота

Структурные формулы:

3.
$$P + 5HNO_3 = H_3PO_4 + 5NO_2 + H_2O$$

NO₂ - оксид азота (IV), тривиальное название – лисий хвост

KClO₃ – хлорат калия, тривиальное название - бертолетова соль.

Бертолетова соль с красным фосфором при механическом воздействии (растирании) реагируют со взрывом.

$$12P + 10KClO_3 = 3P_4O_{10} + 10KCl(6P + 5KClO_3 = 3P_2O_5 + 5KCl)$$

Оценивание:

Определение вещества	1 балл
Уравнение реакции сжигания фосфора:	
с образованием Р ₄ О ₁₀	2балла
(или c образованием P_2O_5)	(1 балл)
Название оксида P ₂ O ₅ / P ₄ O ₁₀	1 балл
Структурная формула Р ₄ О ₁₀	2 балла
(или структурная формула P_2O_5)	(1 балл)
Уравнение реакции растворения P ₄ O ₁₀ в воде	2 балла
(или уравнение растворения P_2O_5 в воде)	(1балл)
Название кислоты Н ₃ РО ₄	1 балл
Структурная формула кислоты Н ₃ РО ₄	2 балла
Уравнение реакции Р с азотной кислотой	3 балла
Формула «красно-бурого газа»	1 балл
Формула соли Бертолле	2 балла
Уравнение реакции Р с хлоратом калия	3 балла
Итого	20 баллов