Решения задач и система оценивания – 8 класс (2024 г)

Задача № 1

Окружает нас воздух — его составные части; вода, хлорид натрия (поваренная соль), сахароза (сахар), гидрокарбонат натрия (пищевая сода), уксусная кислота в составе столового уксуса и эссенции, оксид кремния (кремнезем, кварц) в составе стекла, металлы — железо, алюминий, никель, ...— в составе металлической посуды и т.д.

Система оценивания: примеры веществ — по 0.5 балла за каждый пример +0.5 балла за химическую формулу. Полностью за задачу не более 8 баллов.

Задача № 2

Пусть масса тела равна m кг = $m \cdot 10^3$ г, тогда количество атомов элемента X в организме равно n(X) = $m \cdot 10^3$ г · ω (X) / M(X) г/моль

Система оценивания: расчет количества каждого элемента $-0.5 \times 6 = 3$ балла.

Задача № 3

1) Определим суммарный объём вдохов-выдохов человека за 1 час:

$$V_{\text{общ}} = 0.5 \text{ л/вдох} \cdot 15 \text{ вдох/мин} \cdot 60 \text{ мин} = 450 \text{ л}.$$

Таким образом, объём потребляемого кислорода равен

$$V(O_2/потребл) = V(O_2/вдох) - V(O_2/выдох) = V_{общ} (\phi(O_2/вдох) - \phi(O_2/выдох)) = = 450 (0.21 - 0.165) = 20.25 л за 1 час;$$

Объём выдыхаемого углекислого газа равен

$$V(CO_2/выдыхаем) = V(CO_2/выдох) - V(CO_2/вдох) = V_{общ} (\phi(CO_2/выдох) - \phi(CO_2/вдох)) = = 450 (0.045 - 0.0003) = 20.115 л за 1 час.$$

2) Определим суммарный объём вдохов-выдохов 20 учеников за 45 минут урока $V_{\text{общ}} = 0.5 \text{ л/вдох} \cdot 15 \text{ вдох/мин} \cdot 45 \text{ мин} \cdot 20 \text{ чел} = 6750 \text{ л}.$

Объём выдыхаемого углекислого газа равен

 $V(CO_2/выдыхаем) = 6750 \cdot (0,045-0,0003) = 301,725$ л, а его объёмная доля в классе к концу урока составляет $\phi(CO_2) = V(CO_2/выдыхаем) / V$ (класс) = 301,725 л/ 100000 л = $3,02 \cdot 10^{-3}$ = 0,3 %.

Система оценивания: определение объёмов кислорода и углекислого газа $-2 \times 2 = 4$ балла; определение объёмной доли углекислого газа в классе -3 балла.

Задача № 4

Рассчитаем суммарную массу раствора после всех манипуляций:

$$m_{o6 m} = 600 + 10 + 15 + 700 - 105 = 1220 \ \Gamma$$

Масса соли в конечном растворе:

$$m_{\text{общ}}$$
 (соль) = $600 \cdot 0.1 + 15 + 700 \cdot 0.4 = 355 г$

Таким образом, массовая доля соли в конечном растворе ω (соль) = 355 / 1220 = 0,291 = 29,1 %

Система оценивания: расчет $-1 \times 3 = 3$ балла.

Задача № 5

Рассчитаем количества взятых газов $n(ras) = V \cdot \rho / M(ras)$:

а) водород
$$n(H_2) = (0.05 \text{ м}^3 \cdot 71 \text{ кг/м}^3) \cdot 10^3 \text{ г} / 2 \text{ г/моль} = 1775 моль;$$

б) пропан $n(C_3H_6) = (0.05 \text{ м}^3 \cdot 550 \text{ кг/м}^3) \cdot 10^3 \text{ г} / 42 \text{ г/моль} = 655 \text{ моль}.$

Работа двигателей протекает за счет тепловых эффектов химических реакций:

$$2 H_2 + O_2 = 2 H_2O + 2 \cdot (240 \text{ кДж/моль } H_2)$$
 (1)

$$2 C_3 H_6 + 9 O_2 = 6 CO_2 + 6 H_2 O + 2 \cdot (2200 кДж/моль C_3 H_6)$$
 (2)

Учитывая КПД двигателя η, определим количество энергии, пошедшее на его работу:

а) двигатель на водороде $E \ \kappa Дж = \eta \cdot n(H_2) \ моль \cdot Q(H_2) \ \kappa Дж/моль =$

$$= 0.2 \cdot 1775$$
 моль $\cdot 240$ кДж/моль $= 85200$ кДж;

б) двигатель на пропане Е кДж = $\eta \cdot n(C_3H_6)$ моль $\cdot Q(C_3H_6)$ кДж/моль =

$$= 0.4 \cdot 655$$
 моль $\cdot 2200$ кДж/моль $= 576400$ кДж.

Таким образом, время работы двигателя равно $t = E \, \kappa Дж / W \, \kappa B T$:

- а) двигатель на водороде t = 85200 кДж / 50 кВт = 1704 c = 28,4 мин;
- б) двигатель на пропане t = 576400 кДж / 50 кВт = 11528 c = 192 мин = 3,2 часа. Определим объем выбросов углекислого газа в окружающую среду при работе пропанового двигателя и производстве необходимого количества водорода:
- а) по реакции (2): $V(CO_2) = (n(C_2H_6)/2) \cdot 6 \cdot 22,4$ л/моль = (655моль /2) $\cdot 6 \cdot 22,4$ л/моль = = 44016 л = 44 м³;
- б) по реакции (1) выбросов углекислого газа нет, но при производстве водорода из природного газа метана он появляется

$$CH_4 + 2 H_2O = CO_2 + 4 H_2$$
 (3)

По реакции (3):
$$V(CO_2) = (n(H_2)/4) \cdot 1 \cdot 22,4$$
 л/моль = $(1775$ моль $/4) \cdot 1 \cdot 22,4$ л/моль = 9940 л = 9.94 м³

Вывод: за 192 мин пропанового двигателя в атмосферу попадает 44 м³ углекислого газа; если бы водородный двигатель работал такое же время, то при получении необходимого количества водорода из метана выделилось бы в атмосферу $(192/28,4) \cdot 9,94 = 67,2$ м³ CO₂. Пропановый двигатель оказывается более экологичен, чем водородный по части выбросов углекислого газа!

Система оценивания: определение количества газов — 2 балла; расчет энергии, израсходованной на работу двигателей — 2 балла; расчет времени работы двигателей — $0.5 \times 2 = 1$ балл; расчет объёма выбросов углекислого газа $1.5 \times 2 = 3$ балла; вывод об экологичности двигателей — 1 балл, уравнения реакций — 3 балла.

Задача № 6

Согласно условию задачи, возможны три варианта смеси галогенидов натрия в растворе:

Один из возможных путей определения:

– обрабатываем образец исследуемого раствора раствором CaCl₂ и если образуется осадок, то в растворе присутствует NaF возможны варианты 1) или 2):

$$2 \text{ NaF} + \text{CaCl}_2 = \text{CaF}_2 \downarrow + 2 \text{ NaCl}$$

отсутствие осадка однозначно указывает на вариант 3);

- распознание вариантов 1) и 2) можно легко провести с помощью раствора $AgNO_3$ по цвету осадка (соль AgF – растворима)

вариант 2) : NaI + AgNO₃ = AgI
$$\downarrow$$
(желтый) + NaNO₃

Возможны и другие пути распознания состава исследуемого раствора.

Система оценивания: перечень вариантов смеси -1 балл, методика опознания -3 балла; уравнения реакций -3 балла.