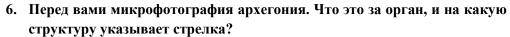


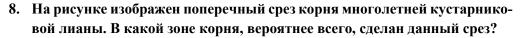
Муниципальный этап Всероссийской олимпиады школьников в 2023-2024 учебном году

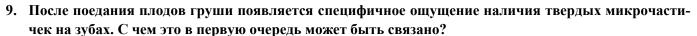
Предмет	Класс	Дата	Время начала	Время окончания
биология	11 класс	27.11.2023	10.00	13.00

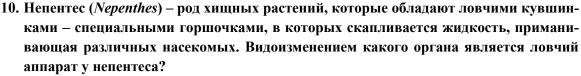
Часть I. Вам предлагаются тестовые задания, требующие выбора только одного ответа из четырех возможных. Максимальное количество баллов, которое можно набрать -60 (по 1 баллу за каждое тестовое задание). Индекс ответа, который вы считаете наиболее полным и правильным, укажите в матрице ответов, данное задание можно использовать в качестве черновика.

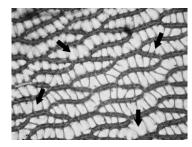

1. На приведенной микрофотографии показан замечательный представитель отдела Красные водоросли — батрахоспермум (*Batrachospermum*), который получил свое название за отдаленное сходство с лягушачьей икрой. Примечательно, что тело водоросли (таллом) вовсе не красного (как следовало бы из названия отдела), а оливково-зелененого оттенка. Выберите верное утверждение, характеризующее эту водоросль.

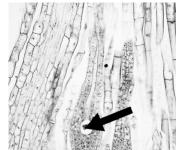
- а) гаметы имеют по два жгутика;
- б) оболочка хлоропластов включает одну мембрану;
- в) обитает в морях на глубине до 200 м;
- г) в клетках отсутствует пигмент фикоэритрин характерный для многих других красных водорослей.
- 2. Какие органеллы у инфузории туфельки (*Paramecium caudatum*) имеют эндосимбиотическое происхождение от бактерий?
 - а) хлоропласты;
 - б) рибосомы;
 - в) митохондрии;
 - г) аппарат Гольджи.
- 3. Эвглены (*Euglena*) микроскопические водоросли, название которых связано с наличием в их клетках хорошо заметного пигментного пятна – глазка (от греч. «*eu*» – хороший, «*glēnē*» – глазное яблоко). Где располагается глазок в клетке эвглены?
 - а) в хлоропласте;
 - б) в ядре;
 - в) в полости эндоплазматической сети;
 - г) в цитоплазме.
- 4. На фотографии представлен кадр, на котором фотограф решил запечатлеть на фотопленке живописный гриб, растущий на валежном дереве. Плодовое тело этого шляпочного гриба, вероятнее всего, имеет следующую плоидность гиф:
 - a) 2n;
 - б) n;
 - в) n+n;
 - г) 3n.

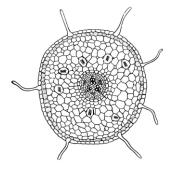

- 5. На микрофотографии представлен срез «листьев» сфагнума (*Sphagnum sp.*) Стрелками отмечены гиалиновые клетки, предположите, какую функцию они выполняют.
 - а) являются живыми клетками-предшественницами для хлорофиллоносных клеток;
 - б) запасают воду;
 - в) запасают крахмальные гранулы, вследствие чего клетки полупрозрачны;
 - Γ) содержат специфичные белковые комплексы, необходимые для процесса фотосинтеза.


- а) женский орган полового размножения высших споровых растений, яйцеклетка;
- б) мужской орган полового размножения высших споровых растений, сперматогенная ткань;
- в) спорангий, спора:
- г) женский орган полового размножения цветковых растений; яйцеклетка.

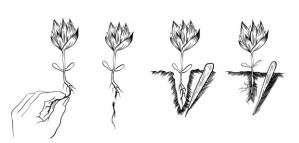

- а) гаплоидный;
- б) диплоидный;
- в) триплоидный;
- г) тетраплоидный.


- а) зоне деления;
- б) зоне роста;
- в) зоне всасывания;
- г) зоне проведения.




- а) с тем, что плоды были недостаточно промыты проточной водой;
- б) с наличием воскового налета на плодах;
- в) с наличием множества каменистых клеток (брахисклереид), составляющих механическую ткань плода;
- г) с денатурацией и выпадением в осадок белков, содержащихся в слюне, в следствие наличия специфичных веществ в мякоти плода.

- а) листа;
- б) стебля;
- в) корня;
- г) цветка.
- 11. Для яблони, рябины и кокосовой пальмы характерны следующие плоды:
 - а) яблоко, костянка, орешек;
 - б) яблоко, ягода, орех;
 - в) ягода, костянка, орех;
 - г) яблоко, яблоко, костянка.

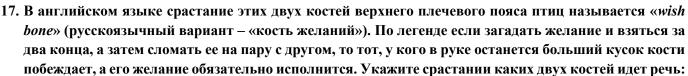


- 12. Какой агроприем изображен на рисунке?
 - а) прореживание;
 - б) окучивание;
 - в) прищипка;
 - г) пикировка.
- 13. Жители некоторого города N были ярыми любителями фруктов, а в особенности бананов. В этом городе расположены большие банановые плантации и склад,

где хранится весь собранный урожай. К сожалению, дирекция бананового предприятия пренебрежительно относилась к правилам безопасности и условиям хранения урожая, в результате чего произошла утечка газа. Через некоторое время рабочие склада заметили, что все бананы, хранящиеся на складе, почернели. Какой газ вызвал почернение бананов за относительно короткое время?

- а) метан;
- б) этилен;
- в) углекислый газ;
- г) кислород.

14. Планула гидроидных является лецитотрофной личинкой. Для планулы верно, что она:

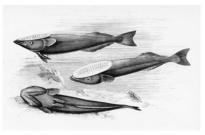

- а) питается самостоятельно через ротовое отверстие;
- б) питается только за счет накопленных внутри питательных веществ;
- в) питается лейцином;
- г) нет правильного ответа.

15. Дыхание у мокриц (группа Oniscidea) осуществляется через:

- а) трахеи;
- б) жабры;
- в) легкие;
- г) всю поверхность тела.

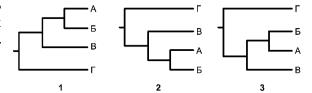
16. Присоска рыб семейства Прилипаловые (Echeneidae) представляет собой:

- а) сросшиеся видоизмененные сегменты тела;
- б) видоизмененный спинной плавник;
- в) видоизмененные челюсти;
- г) мускульное кольцо, покрытое эпидермисом.


- а) плечевые;
- б) ключичные;
- в) коракоиды;
- г) фаланги пальцев.

18. Среднее ухо впервые в эволюции позвоночных животных появляется у:

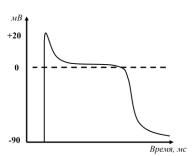
- а) рыб;
- б) земноводных;
- в) пресмыкающихся;
- г) птиц.


19. Полностью отсутствуют зубы на челюстях у:

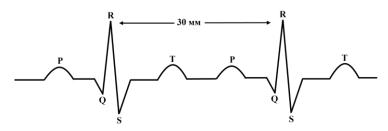
- а) зайца-беляка (Lepus timidus);
- б) чёрного коршуна (Milvus migrans);
- в) зайца-русака (Lepus europaeus);
- г) обыкновенной гадюки (Vipera berus).

- 20. Какой отдел позвоночника млекопитающих характеризуется высокой степенью постоянства количества позвонков, входящих в его состав?
 - а) хвостовой;
 - б) грудной;
 - в) поясничный;
 - г) шейный.
- 21. Выберите вариант, соответствующий примеру трофического каскада:
 - а) увеличение температуры воды в океане ведет к исчезновению некоторых видов кораллов;
 - б) использование пестицидов приводит к сокращению численности диких пчел;
 - в) увеличение численности волков приводит к сокращению популяции оленей;
 - г) органический материал в лесу разлагается вследствие жизнедеятельности бактерий.
- 22. Изучение метаболитов водорослей привело к открытию многочисленных органических молекул, в состав которых входит бром. Так, например, красная водоросль *Delisea* выделяет изображенное на рисунке бром-замещенное фураноновое производное. При этом многочисленные исследования показали, что выделение этой молекулы может отрицательно коррелировать с заселенностью эпифитными водорослями на поверхности *Delisea*. Укажите возможную функциональную роль данной молекулы для *Delisea*.

- а) является фитотоксичной и регулирует популяцию эпифитной флоры на поверхности *Delisea*;
- б) является молекулой-феромоном, стимулирующей высвобождение гамет из созревших половых органов *Delisea*;
- в) является продуктом выделения брома из организма водоросли;
- г) не обладает физиологической активностью.
- 23. Пауки-птицееды, вопреки названию, питаются не только птицами. Они могут съедать насекомых, других пауков, мелких грызунов, а также лягушек. Однако нередко можно увидеть, как паукптицеед заводит себе «домашнее животное» в виде крохотной лягушки из семейства Microhylidae (Узкороты). Дело в том, что некоторые насекомые (в частности, муравьи) любят полакомиться яйцами тарантулов. Лягушки поедают муравьёв, тем самым защищая яйца птицеедов. Птицееды же, в свою очередь, охраняют лягушек от хищных рептилий и членистоногих. Выберите наиболее подходящий тип отношений между птицеедами и узкоротами:
 - а) комменсализм;
 - б) необязательный мутуализм;
 - в) нейтрализм;
 - г) аменсализм.
- 24. Известно, что группы A и Б являются сестринскими, а группа Γ базальной. На основании этих данных выберите кладограмму, которая наиболее точно отражает родство между группами A, Б, В и Γ :



- a) 1;
- б) 2;
- в) 3;
- г) все варианты верны.
- 25. Знаменитый немецкий микробиолог Роберт Кох, который всем известен тем, что открыл возбудителя туберкулёза именуемого в честь своего первооткрывателя палочкой Коха, также совершил революционное открытие, которое помогло ускорить темпы развития микробиологии в несколько раз. Какое открытие было совершенно Кохом?
 - а) открытие возбудителя черной оспы
 - б) разработка лекарства от сифилиса
 - в) детальное изучение клеточной стенки грам(-) бактерий
 - г) создание твердых питательных сред


- 26. Юный микробиолог решил размножить бактерий в биореакторе, он посеял в него примерно 10000 бактерий, посчитайте примерно какая концентрация бактерий будет в биореакторе через 20 минут, если его объем составляет 10 литров, а бактерии делятся каждые 2 минуты. Выберите наиболее подходящий ответ из предложенных ниже вариантов:
 - a) 625·2¹⁴ бакт/литр;
 - б) 125·2¹⁴ бакт/литр;
 - в) 125·2¹³ бакт/литр;
 - г) $625 \cdot 2^{13}$ бакт/литр.
- 27. Стенка фолликулов щитовидной железы человека в норме состоит из:
 - а) одного слоя плоских клеток;
 - б) одного слоя кубических клеток;
 - в) одного слоя цилиндрических клеток;
 - г) двух слоев кубических клеток.
- 28. Сколько долей у левого лёгкого?
 - a) 1;
 - б) 2;
 - в) 3;
 - г) 4.
- 29. В чем заключается механизм работы желчи?
 - а) в расщеплении жиров;
 - б) в эмульгировании жиров;
 - в) в расщеплении углеводов;
 - г) в расщеплении белков.
- 30. Для каких клеток характерен платообразный график потенциала действиям?

- б) пейсмейкерные (атипичные) кардиомиоциты;
- в) нервные клетки;
- г) мышечные клетки.

- 31. Спортсмен решил принять участие в полумарафоне. Полумарафон представляет собой забег на дистанцию 21 км. Известно, что марафон (42 км) спортсмен пробегает за 160 минут, его пульс в период бега составляет 140 ударов в минуту. В покое сердце выбрасывает 70 мл крови в секунду. Однако во время бега количество крови, выбрасываемое сердцем, составляет на 30 мл больше. Сколько литров крови перекачает сердце спортсмена в течение полумарафона?
 - а) 1120 литров;
 - б) 112 литров;
 - в) 2240 литров;
 - г) 224 литров.
- 32. Любой медицинский осмотр включает в себя классическое исследование сердечной деятельности человека электрокардиография (ЭКГ). На нормальной ЭКГ человека выделяют 5 зубцов: P, Q, R, S и Т. Каждый из зубцов и сегментов (расстояние от одного зубца до другого) отражает электрическую активность определенной анатомической части сердца в некоторый момент времени. Зная расстояние от одного зубца R до другого, можно рассчитать частоту сердечных сокращений (ЧСС). Известно, что скорость записи ленты ЭКГ составляет 40 мм/сек. Какая ЧСС у человека, чей фрагмент ЭКГ приведен ниже?

- а) 60 сокращений/мин;
- б) 70 сокращений/мин;
- в) 80 сокращений/мин;
- г) 75 сокращений/мин.
- 33. Нормальный сон важнейший элемент здорового и нормального существования человека. Известно, что сон делится на медленноволновую фазу и фазу быстрых движений глаз, в течение которых происходят изменения вегетативных функций организма, а также процессы переработки информации, полученной во время бодрствования. Фаза быстрых движений глаз также именуется парадоксальной. В чем заключается парадокс данной фазы?
 - а) у спящего человека в течение фазы быстрых движений глаз возникают быстрые движения глаз при закрытых веках;
 - б) относительно мышечной системы наблюдается расслабление, но при этом уровень электрической активности мозга сопоставим с уровнем активности во время бодрствования;
 - в) в фазу быстрых движений глаз человек видит яркие сновидения, а также может «ходить во сне» (явление сомнамбулизма, или лунатизма);
 - г) у новорожденных доминирует фаза быстрых движений глаз, а у взрослых, напротив, медленноволновая.
- 34. Память это способность фиксировать, сохранять и воспроизводить информацию. В свою очередь память разделяется на кратковременную, промежуточную и долговременную. В формировании памяти участвует множество структур головного мозга. Отметьте структуру мозга, которая отвечает за формирование долговременной памяти и способности человека к обучению новым навыкам (например, игре на музыкальном инструменте). Известно, что серьезное повреждение этой структуры мозга приводит к различным формам амнезии.
 - а) гиппокамп;
 - б) височная доля коры головного мозга;
 - в) миндалина;
 - г) мозжечок.
- 35. Сол Гудман сходил на концерт известной рок-группы, после которого почувствовал кратковременную заложенность в ушах. Исключив любые травмирующие события, связанные со слуховой системой, предположите, почему возникает заложенность?
 - а) при громких звуках напрягающая мышца среднего уха сокращается, ограничивая амплитуду колебаний барабанной перепонки, а после возвращения в тихое помещение не успевает расслабиться;

- б) часть волосковых клеток находится в состоянии рефрактерности и не может возбудиться;
- в) часть клеток первичной слуховой коры находится в состоянии рефрактерности и не может возбудиться;
- г) громкие звуки вызывают сильный сдвиг базилярной мембраны относительно текториальной, поэтому дальнейший изгиб волосков на рецепторных клетках для генерации возбуждения невозможен.
- 36. Раздражение каких рецепторов участвует в определении чувства насыщения?
 - а) тельца Руффини;
 - б) ноцицепторы;
 - в) механорецепторы в стенках желудка;
 - г) проприорецепторы.

37. Ни для кого не секрет, что витамин D (кальциферол) необходим для нормального роста костей, их правильного ремоделинга и усвоения кальция из пищи. Более двух веков назад, люди знали, что недостаток солнечного света сулит рахит и мышечную слабость, а в тяжелых случаях приводит даже к переломам. Вам уже возможно известно, что поступление и вымывание кальция из костного депо регулируется посредством гормонов, тогда действие какого гормона, ингибирует витамин D? а) ингибин; б) кальцитонин;
в) паратгормон;
г) секретин.
38. Как называется часть хромосомы, к которой непосредственно крепятся микротрубочки веретена
деления?
а) теломера;
б) хроматида;
в) кинетохор; г) центромера.
1) центромера. 39. Из этого белка формируется важная часть цитоскелета, которая играет роль молекулярных «рель-
сов», по которым с помощью особых моторных белков осуществляется транспорт везикул или це-
лых органелл. Про какой белок идёт речь?
лых органелл. про какои ослок идет речь: a) убиквитин;
б) тубулин;
в) актин;
г) десмин.
40. За счет чего поддерживается кислый рН в полости лизосом?
а) за счет образования свободных аминокислот в следствие протеолиза пептидов;
б) за счет выкачивания из лизосом гидроксид-ионов специальными насосами;
в) за счет наличия протонных насосов, закачивающих протоны из цитоплазмы в лизосомы;
г) за счет синтеза кислых белков на рибосомах, находящихся непосредственно в полости лизосом.
41. Олеосомы (сферосомы) – клеточные компартменты растений, выполняющие функцию хранения
липидов. Мембрана олеосомы является фосфолипидным:
а) монослоем;
б) бислоем;
в) тетраслоем;
г) октослоем.
42. При сокращении скелетных мышц этот белок активно гидролизует АТФ и обеспечивает мышечное
сокращение?
а) актин;
б) миозин;
в) цитохром Р450;
г) миоглобин.
43. Процесс присоединения углеводных остатков к боковым группам серина и треонина в белках носит
название:
а) О-гликозилирования;
б) С-гликозилирования;
в) N-гликозилирования;
г) S-метилирования.
44. Сколько существует природных разновидностей аминокислот?
a) 20;
6) 21; p) 22:
в) 22; г) более 250.
1) object 250.

45. Какой субстрат ингибирует фосфофруктокиназу при избыточном образовании аденозинтрифосфата в клетке?

- а) фруктоза-1,6-дифосфат;
- б) АДФ;
- в) АТФ;
- г) фруктоза-6-фосфат.

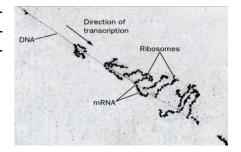
46. Какой из комплексов дыхательной цепи переноса электронов также участвует в реакции цикла трикарбоновых кислот?

- а) комплекс I (НАДН-дегидрогеназный-комплекс);
- б) комплекс II (сукцинатдегидрогеназа);
- в) комплекс III (Цитохром-bc1-комплекс);
- г) ни один из вышеперечисленных.

47. Миоглобин, в отличие от гемоглобина:

- а) переносит кислород;
- б) имеет в составе гема катион цинка;
- в) состоит из одной полипептидной цепи;
- г) характерен исключительно для млекопитающих.
- 48. На рисунке схематично представлен активный центр белка гемоцианина, выполняющего роль переносчика кислорода в гемолимфе некоторых групп беспозвоночных, включая Головоногих моллюсков и Членистоногих. Выберите верное утверждение относительно этого белка.

- а) гемоцианин имеет в своем составе порфириновое кольцо;
- б) на рисунке изображен димер гемоцианина с кислородом;
- в) конформация комплекса кислорода с гемоцианином аналогично таковой в гемоглобине;
- г) скорее всего спектры поглощения в видимой области белка с кислородом и без отличаются.

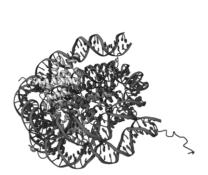

49. РуБисКО - самый распространенный фермент на планете Земля. Интересно, что фермент имеет две активности: карбоксилазную и оксигеназную. Для каких ключевых процессов/процесса жизнедеятельности растения важна карбоксилазная и оксигеназная активность?

- а) карбоксилазная активность имеет ключевую роль для реализации фотосинтеза, а оксигеназная для фотодыхания;
- б) карбоксилазная активность имеет ключевую роль для реализации фотодыхания, а оксигеназная для фотосинтеза;
- в) карбоксилазная активность имеет ключевую роль для реализации фотосинтеза, а оксигеназная для цикла Кребса;
- г) и карбоксилазная, и оксигеназная активность фермента важны для реализации процесса фотосинтеза.

50. Выберите наиболее быстрый процесс:

- а) репликация всей ДНК клетки;
- б) синтез одной молекулы белка актина на рибосоме;
- в) митоз;
- г) мейоз.

- 51. Известно, что данная микрофотография была получена при исследовании прокариотической клетки. Внимательно рассмотрите микрофотографию и предположите какие из ниже предложенных утверждений верны:
 - а) транскрипция и трансляция у прокариот идут сопряженно;
 - б) репликация и трансляция у прокариот идут сопряженно;
 - в) репликация и транскрипция у прокариот идут сопряженно;
 - г) только после окончания транскрипции начинается трансляция.



- 52. ДНК представляет собой две полимерные цепочки; азотистые основания в разных цепях образуют между собой водородные связи. Если раствор с ДНК нагреть до 85-95°C, то:
 - а) цепочки ДНК будут разрушены до отдельных нуклеотидов;
 - б) ДНК перейдет в одноцепочечную форму, водородные связи будут разрушены;
 - в) ДНК свернется в «клубочки» и выпадет в осадок;
 - г) ковалентные связи между азотистыми основаниями и дезоксирибозой разрушатся, в результате чего информация, записанная в ДНК, будет стерта.
- 53. На данный момент белковые молекулы классифицируют на четыре класса, на основании их общей трехмерной структуры: глобулярные, фибриллярные, мембранные и внутренне-неупорядоченные белки. Последний класс характеризуется неструктурированной конформацией и отсутствием четко определенной формы молекулы. Выберите верное утверждение относительно внутренне-неупорядоченных белков.
 - а) за счет чрезвычайно подвижной конформации они не способны выполнять какие-либо функции;
 - б) обладают большим количеством дисульфидных связей;
 - в) содержат множество гидрофобных аминокислотных остатков;
 - г) бедны по разнообразию аминокислотных остатков и включают преимущественно заряженные аминокислотные остатки, а также остатки пролина и/или глицина.
- 54. Какой наиболее вероятной структуре соответствует приведенная ленточная модель молекулярного комплекса?
 - а) протеасома;
 - б) рибосома;
 - в) лизосома;
 - г) нуклеосома.
- 55. Какого вида РНК больше всего в клетке?
 - а) мРНК;
 - б) рРНК;
 - в) тРНК;
 - г) мяРНК.
- 56. Какой из перечисленных полимеразных ферментов называют ревертазой (обратной транксриптазой)?
 - а) ДНК-зависимую ДНК-полимеразу;
 - б) РНК-зависимую РНК-полимеразу;
 - в) РНК-зависимую ДНК-полимеразу;
 - г) ДНК-зависимую РНК-полимеразу.
- 57. Фермент X относится классу изомераз и изменяет топологию молекулы ДНК. Известно, что фермент X участвует в транскрипции и репликации, релаксируя сверхспирализованную ДНК. Укажите, что это за фермент?
 - а) ДНК-зависимая РНК-полимераза;

в) геликаза;

б) праймаза;

г) топоизомераза.

58.	8. Что из перечисленного необязательно должно присутствовать в вирусной частице?		
	а) белковый капсид;		
	б) суперкапсид;		
	в) нуклеиновая кислота;		
	г) капсомеры.		
59.	Синдром Кернса-Сейра и атрофия зрительного	<u>-</u>	
		рите верное утверждение о данных заболеваниях:	
	а) передаются только от матери к детям обоих полов	;	
	б) передаются только от отца к детям обоих полов;		
	в) передаются как от матери, так и от отца к детям о		
	г) передаются только от отца и только к детям мужс		
60.	Белла и Роберт ответственно отнеслись к рожде	· · ·	
	*	ребенок может иметь любую из групп крови (по	
		в предложенного списка: 1) у Беллы может быть	
		орая группа крови; 3) у Роберта может быть чет-	
	вертая группа крови; 4) у Роберта может быть пер	вая группа крови; 5) у Роберта может быть третья	
	группа крови.		
	a) 1, 3;		
	6) 2, 5;		
	в) 1, 3, 4;		
	г) 1, 2, 3, 4;		
	д) 1, 2, 3, 4, 5.		
	ных, но требующих предварительного множест	ания с одним вариантом ответа из пяти возможвенного выбора. Максимальное количество балаждое тестовое задание). Индекс ответа, который ажите в матрице ответов.	
1.	f f	ые) водоросли; 2) галофитон – водоросли, обитаю-) фитоэдафон – паразитические водоросли; 4) фи-	
	a) 1, 2, 3;	г) 2, 4, 5;	
	6) 2, 3, 5;	д) 3, 4, 5.	
	в) 1, 2, 4;		
2.	Нефотосинтезирующие пластиды имеются у: 1) х	ламидомонады (<i>Chlamydomonas</i>); 2) малярийного	
	плазмодия (Plasmodium falciparum); 3) фитофторы	и (Phytophthora); 4) лямблии (Giardia); 5) подъель-	
	ника одноцветкового (Monotropa uniflora).		
	a) 5;	r) 4, 5;	
	6) 2, 3;	д) 1, 4.	
	в) 2, 5;		
_			
3.	Выберите стадии развития папоротника, не явл	яющиеся гаплоидными: 1) спора; 2) заросток; 3)	
	архегоний; 4) зигота; 5) спорофит.		
	a) 4;	r) 2, 3, 4, 5;	
	6) 4, 5;	д) 1, 2, 3, 4, 5.	
	в) 3, 4, 5;		

4.	Основные составляющие устычного аппарата: 1) трихомы; 2) замыкающие клетки; 3) побочные			
	клетки; 4) устьичная щель; 5) основные эпидермальные клетки.			
	a) 3, 4, 5; r) 2, 3, 5;			
	б) 1, 2, 4; д) 1, 2, 3.			
_	в) 2, 3, 4;			
5.	Николай Иванович очень любил ходить на охоту. Одна-			
	жды он поймал дикого кабана, и по возвращении домой приготовил из него стейк слабой прожарки, которым уго-			
	стил всю семью. Через несколько дней у всех членов семьи			
	появилась тошнота и диарея, а позднее – головная боль,			
	лихорадка, зуд и припухлость вокруг глаз. Они обрати-			
	лись за помощью в медицинское учреждение. В результате			
	гистологического анализа мяса пойманного кабана были			
	обнаружены инкапсулированные личинки гельминтов			
	(гистологический срез тканей представлен на картинке).			
	Выберите верные утверждения: 1) это гистологический срез мышечной ткани; 2) это гистологиче			
	ский срез соединительной ткани; 3) личинки на фотографии - паразитические круглые черви; 4			
	личинки на фотографии – паразитические плоские черви; 5) личинки на фотографии – трихи			
	неллы.			
	a) 2, 4;			
	б) 1, 3;			
	в) 1, 4;			
6.	Какие из перечисленных животных относятся к типу Моллюски (Mollusca): 1) морской ангел			
	(Clione limacina); 2) морской каравай (группа Halichondriidae); 3) морской дьявол (Manta birostris)			
	4) морская уточка (группа Lepadomorpha); 5) морской финик (Lithophaga lithophaga).			
	a) 1, 5;			
	б) 3, 4; д) 2, 4, 5.			
_	B) 1, 2, 5;			
7.	Сложные многокамерные желудки характерны для следующих видов млекопитающих: 1) домаш			
	няя корова; 2) серый волк; 3) домашняя собака; 4) домашняя кошка; 5) серая крыса.			
	a) 5; r) 2, 3;			
	б) 1; ¬) 1, 5;			
0	B) 1, 5;			
0.	В состав рефлекторной дуги коленного рефлекса входят: 1) эффектор; 2) эффекторный нейрон; 3 чувствительный нейрон; 4) рецептор; 5) вставочный нейрон.			
	a) 1, 2, 3;			
	б) 1, 2, 3, 4, 5; д) 2, 3.			
	в) 1, 2, 3, 4;			
9.	Многоядерные структуры в норме характерны для: 1) гладкой мускулатуры; 2) скелетной муску			
	латуры; 3) остеокластов; 4) однослойного многорядного эпителия; 5) многослойного плоского оро			
	говевающего эпителия.			
	a) 1, 3;			
	б) 2, 3; д) 2, 3, 4, 5.			
	в) 4, 5;			
10.	Расположите этапы, происходящие на стадии профазы І мейоза, в правильном порядке: 1) зиготена			
	2) лептотена; 3) диакинез; 4) диплотена; 5) пахитена.			
	a) 1, 2, 3, 4, 5; r) 2, 1, 5, 4, 3;			
	б) 5, 1, 2, 4, 3; д) 3, 1, 2, 4, 5.			
	в) 1, 2, 4, 5, 3;			

11. Ге	нетическая информация в клетках эукариот может с	одержаться в: 1) аппарате Гольджи; 2) ми-
TO	кондриях; 3) сократительных вакуолях; 4) пластидах	; 5) центриолях.
a) 2	2;	3, 5;
б) <i>-</i>		1, 2, 4.
	2, 4;	, ,
	тановите последовательность осаждения клеточных	структур в процессе ультрацентрифугиро-
	ния: 1) ядро; 2) митохондрии; 3) рибосомы; 4) хлороп	
		2, 4, 5, 3, 1;
		4, 2, 5, 3, 1.
	1, 4, 2, 5, 3;	1, 2, 3, 3, 11
	л, л, 2, 2, 2, ллаген – важный внеклеточный фибриллярный бел	ок. Как и многие секреторные белки, поли-
	птидная цепь коллагена на самых ранних этапах соз	• •
	ю последовательность, которая нужна для того, чтоб	•
-	ану эндоплазматической сети (ЭПС) и синтез цепи пр	
	те правильную последовательность основных событ	
	ние) сигнальной последовательности; 2) поступление.	, 1
	липентидных цепей коллагена в аппарат Гольджи	
	липентидных ценен коллагена в аппарат гольджи внутрь полости ЭПС; 4) упаковка коллагеновых спиј	
	внутрь полости ЭнС, 4) упаковка коллагеновых спиј вка их в межклеточное пространство.	зален в секреторные вакуоли и транспорти-
_		2, 1, 3, 4;
		2, 1, 3, 4, 3, 4, 2, 3.
		3, 4, 2, 3.
	3, 1, 2, 4;	rom . 1) HHIC manner and I formance E colin
	твертичную структуру белковой молекулы могут им	
	инсулин; 3) гемоглобин; 4) гепарин; 5) иммуноглобул	
-		1, 2, 3, 5;
		1, 2, 3, 4, 5.
	2, 3, 4;	
	рисунке изображена молекула NADPH в сайте свя-	T245
	вания ферментом 3-хиноклидинон редуктазой из	
	ожжей <i>Rhodotorula rubra</i> . Из отмеченных контактов ределяют специфичность по отношению к NADPH, но	E 00 -
	ределяют специфичность по отношению к NADI II, но NADH: 1) контакт с се-	
	ном 61; 3) контакт с треонином 215; 4) контакт с се-	Тирозин181
_	ном 31; 5) контакт с треонином 213; 4) контакт с гли- ном 39; 5) контакт с тирозином 181.	Глицин37
	•	Рибоза
a) 2	2, 1, 3;	X D
	1, <i>3</i> , 1, 4;	Аденин
	2, 3;	Серин61
-	4, 5.	
	-, э. босома – сложнейшая молекулярная машина клетки.	Глутамат86
	процессе трансляции она осуществляет декодирова	
	РНК в полипентидные цепи белков. Из каких струк	
	ІК; 2) РНК; 3) углеводы; 4) липиды; 5) белки.	or photosius 1)
a) :		2, 4;
-	•	1, 3.
	· ·	

в) 2, 5;

- 17. К посттрансляционным модификациям белка относятся: 1) фосфорилирование; 2) полиаденилирование; 3) убиквитинирование; 4) кэпирование; 5) гликозилирование.
 - a) 1, 5;

г) 1, 2, 4, 5;

б) 1, 2, 5;

д) 1, 2, 3, 4, 5.

- в) 1, 3, 5;
- 18. Через клеточную мембрану свободно могут проходить путем обычной диффузии: 1) ионы натрия; 2) молекулы воды; 3) этанол; 4) молекулы азота N₂; 5) нуклеиновые кислоты.
 - a) 1, 2, 3;

 Γ) 2, 4, 5;

6)2, 3, 4;

д) 3, 4, 5.

в) 1, 3, 4;

- 19. Следующий рисунок иллюстрирует процесс, который изучается в рамках молекулярной биологии. Выберите верные утверждения: 1) цифрой 1 обозначена молекула РНК; 2) цифрой 2 обозначена РНКполимераза; 3) цифрой 3 обозначена молекула ДНК; 4) цифрой 4 обозначена молекула тРНК; 5) данный рисунок иллюстрирует процесс транскрипции.
 - a) 4;

 Γ) 1, 3, 5;

6)2,3;

д) 1, 2, 3, 5.

- в) 1, 3;
- 20. Какие два из предложенных заболевания имеют вирусное происхождение: 1) ветряная оспа; 2) ку-лихорадка; 3) желтая лихорадка; 4) сибирская язва; 5) малярийная лихорадка.
 - a) 1, 3;

 Γ) 2, 5;

б) 2, 4, 5;

д) 1, 3, 5.

- в) 1, 2, 5;
- Часть III. Вам предлагаются задания на сопоставления. Заполните матрицу ответов в соответствии с требованиями заданий. Максимальное количество баллов, которое можно набрать – **20**.

Задание 1 (9 баллов). Биохимия

Вопрос 1 (5 баллов). Протеиногенные аминокислоты можно классифицировать на несколько групп, основываясь на способности их боковых цепей (R-групп) взаимодействовать с водой при физиологических значениях среды (pH = 7.0). Соотнесите название аминокислоты с ее структурной формулой (A-Д) и группой (1-4), к которой она принадлежит по данной классификации.

Название:

Лизин:

Триптофан;

Серин;

Пролин;

Аспарагиновая кислота (аспартат).

Б В г Д

Группа:

- 1. Неполярные (гидрофобные) боковые
- 2. Полярные незаряженные боковые цепи;
- 3. Полярные положительно заряженные боковые цепи;
- 4. Полярные отрицательно заряженные боковые цепи.

Вопрос 2 (2 балла). Значение pH, при котором доля нейтрально заряженных молекул достигает 100% в растворе, называется изоэлектрической точкой и обозначается «pI». Рассчитайте pI для аминокислоты цистеина, ответ округлите до целого числа. Справочные данные: pK_1 (для α -COOH) = 1,9; pK_2 (для α -NH₂) = 10,3; pK_3 (для β -SH) = 8,1; pH = 7,0.

Вопрос 3 (2 балла). Значения констант кислотности pK_a ионогенных групп для свободных аминокислот несколько отличаются от таковых для аминокислотных остатков в белках. Выберите, какие факторы могут повлиять на изменение значения pK_a ионогенной группы в белке: 1) температура; 2) стерические факторы; 3) степень гидратации; 4) расположенные по соседству другие ионогенные группы.

- a) 1, 2;
- б) 1, 3;
- в) 2, 4;
- Γ) 3, 4;
- д) 1, 2, 3, 4.

Задание 2 (5 баллов). Генетика

Археспора — вымышленное плотоядное растение из вселенной «Ведьмака». Красная окраска цветка данного растения неполно доминирует над желтой. Гибридное растение имеет оранжевую окраску. Вытянутые листья неполно доминируют над закругленными. У гибридов листья средней вытянутости. Впишите в таблицу ответов, какое потомство получится от скрещивания растения с красными цветками и средними листьями с растением, имеющим оранжевые цветки и средние листья? Ответ укажите в процентах.

Задание 3 (6 баллов). Молекулярная биология

Каждый день молекулярные биологи сталкиваются с простейшими математическими задачами в их рутинной деятельности. Самой частой задачей является расчет концентраций реагентов в итоговой реакционной смеси, исходя из концентраций стоковых (исходных) растворов. Денни Трехо устроился на работу в лабораторию молекулярной биологии на должность лаборанта. Первым делом ему необходимо приготовить ПЦР-смесь объемом 25 мкл из стоковых растворов (см. табл.). Поскольку Денни еще совсем малоопытный, он непременно столкнулся с довольно серьезными математическими проблемами. Рассчитайте объем компонентов, необходимые для приготовления ПЦР-смеси.

Компонент	Концентрация стокового раствора	Конечная концентрация в реакционной смеси	Объем в реакционной смеси (мкл)
ДНК-полимераза	2,0 ед./мкл	0,05 ед./мкл	
Прямой праймер	2,5 мкМ	200 нМ	
Обратный праймер	5 мкМ	200 нМ	
ДНК-матрица	250 нг/мкл	30 нг/мкл	
dNTP	20 мМ	0,6 мМ	
Буфер для ПЦР	2x	1x	
ddH ₂ O			5,125